Proof of Theorem caucvgprprlemnkeqj
Step | Hyp | Ref
| Expression |
1 | | ltsopr 7537 |
. . . 4
⊢
<P Or P |
2 | | ltrelpr 7446 |
. . . 4
⊢
<P ⊆ (P ×
P) |
3 | 1, 2 | son2lpi 5000 |
. . 3
⊢ ¬
((𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)) |
4 | | caucvgprpr.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:N⟶P) |
5 | | caucvgprprlemnkj.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ N) |
6 | 4, 5 | ffvelrnd 5621 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐽) ∈ P) |
7 | 6 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽) ∈ P) |
8 | 5 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 𝐽 ∈ N) |
9 | | nnnq 7363 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ N →
[〈𝐽,
1o〉] ~Q ∈
Q) |
10 | 8, 9 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → [〈𝐽, 1o〉]
~Q ∈ Q) |
11 | | recclnq 7333 |
. . . . . . . . . 10
⊢
([〈𝐽,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
12 | 10, 11 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) |
13 | | nqprlu 7488 |
. . . . . . . . 9
⊢
((*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
14 | 12, 13 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
15 | 14 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
16 | | ltaddpr 7538 |
. . . . . . 7
⊢ (((𝐹‘𝐽) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
17 | 7, 15, 16 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
18 | | simprr 522 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
19 | 1, 2 | sotri 4999 |
. . . . . 6
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) → (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
20 | 17, 18, 19 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
21 | | caucvgprprlemnkj.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Q) |
22 | 21 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 𝑆 ∈ Q) |
23 | | nqprlu 7488 |
. . . . . . . . 9
⊢ (𝑆 ∈ Q →
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈
P) |
24 | 22, 23 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈
P) |
25 | | ltaddpr 7538 |
. . . . . . . 8
⊢
((〈{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈ P
∧ 〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
26 | 24, 14, 25 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
27 | 26 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
28 | | simprl 521 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽)) |
29 | | addnqpr 7502 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
30 | 22, 12, 29 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
31 | 30 | breq1d 3992 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ↔ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
32 | 31 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ↔ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) |
33 | 28, 32 | mpbid 146 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) |
34 | 1, 2 | sotri 4999 |
. . . . . 6
⊢
((〈{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)) |
35 | 27, 33, 34 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)) |
36 | 20, 35 | jca 304 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → ((𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽))) |
37 | 36 | ex 114 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) → ((𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)))) |
38 | 3, 37 | mtoi 654 |
. 2
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
39 | | opeq1 3758 |
. . . . . . . . . . 11
⊢ (𝐾 = 𝐽 → 〈𝐾, 1o〉 = 〈𝐽,
1o〉) |
40 | 39 | eceq1d 6537 |
. . . . . . . . . 10
⊢ (𝐾 = 𝐽 → [〈𝐾, 1o〉]
~Q = [〈𝐽, 1o〉]
~Q ) |
41 | 40 | fveq2d 5490 |
. . . . . . . . 9
⊢ (𝐾 = 𝐽 →
(*Q‘[〈𝐾, 1o〉]
~Q ) = (*Q‘[〈𝐽, 1o〉]
~Q )) |
42 | 41 | oveq2d 5858 |
. . . . . . . 8
⊢ (𝐾 = 𝐽 → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) = (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) |
43 | 42 | breq2d 3994 |
. . . . . . 7
⊢ (𝐾 = 𝐽 → (𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) |
44 | 43 | abbidv 2284 |
. . . . . 6
⊢ (𝐾 = 𝐽 → {𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}) |
45 | 42 | breq1d 3992 |
. . . . . . 7
⊢ (𝐾 = 𝐽 → ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞)) |
46 | 45 | abbidv 2284 |
. . . . . 6
⊢ (𝐾 = 𝐽 → {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}) |
47 | 44, 46 | opeq12d 3766 |
. . . . 5
⊢ (𝐾 = 𝐽 → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉) |
48 | | fveq2 5486 |
. . . . 5
⊢ (𝐾 = 𝐽 → (𝐹‘𝐾) = (𝐹‘𝐽)) |
49 | 47, 48 | breq12d 3995 |
. . . 4
⊢ (𝐾 = 𝐽 → (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽))) |
50 | 49 | anbi1d 461 |
. . 3
⊢ (𝐾 = 𝐽 → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) ↔ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉))) |
51 | 50 | adantl 275 |
. 2
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) ↔ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉))) |
52 | 38, 51 | mtbird 663 |
1
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |