Step | Hyp | Ref
| Expression |
1 | | ltsopr 7597 |
. . . 4
⊢
<P Or P |
2 | | ltrelpr 7506 |
. . . 4
⊢
<P ⊆ (P ×
P) |
3 | 1, 2 | son2lpi 5027 |
. . 3
⊢ ¬
((𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽)) |
4 | | caucvgprpr.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:N⟶P) |
5 | | caucvgprprlemnkj.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ N) |
6 | 4, 5 | ffvelcdmd 5654 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐽) ∈ P) |
7 | 6 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (𝐹‘𝐽) ∈ P) |
8 | 5 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 𝐽 ∈ N) |
9 | | nnnq 7423 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ N →
[⟨𝐽,
1o⟩] ~Q ∈
Q) |
10 | 8, 9 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → [⟨𝐽, 1o⟩]
~Q ∈ Q) |
11 | | recclnq 7393 |
. . . . . . . . . 10
⊢
([⟨𝐽,
1o⟩] ~Q ∈ Q →
(*Q‘[⟨𝐽, 1o⟩]
~Q ) ∈ Q) |
12 | 10, 11 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) →
(*Q‘[⟨𝐽, 1o⟩]
~Q ) ∈ Q) |
13 | | nqprlu 7548 |
. . . . . . . . 9
⊢
((*Q‘[⟨𝐽, 1o⟩]
~Q ) ∈ Q → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
14 | 12, 13 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
15 | 14 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
16 | | ltaddpr 7598 |
. . . . . . 7
⊢ (((𝐹‘𝐽) ∈ P ∧ ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
17 | 7, 15, 16 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
18 | | simprr 531 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) |
19 | 1, 2 | sotri 5026 |
. . . . . 6
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) → (𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) |
20 | 17, 18, 19 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) |
21 | | caucvgprprlemnkj.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Q) |
22 | 21 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 𝑆 ∈ Q) |
23 | | nqprlu 7548 |
. . . . . . . . 9
⊢ (𝑆 ∈ Q →
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∈
P) |
24 | 22, 23 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∈
P) |
25 | | ltaddpr 7598 |
. . . . . . . 8
⊢
((⟨{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∈ P
∧ ⟨{𝑝 ∣
𝑝
<Q (*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈ P) →
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P
(⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
26 | 24, 14, 25 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P
(⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
27 | 26 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P
(⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
28 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽)) |
29 | | addnqpr 7562 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Q ∧
(*Q‘[⟨𝐽, 1o⟩]
~Q ) ∈ Q) → ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩ = (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
30 | 22, 12, 29 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩ = (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
31 | 30 | breq1d 4015 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ↔ (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐽))) |
32 | 31 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ↔ (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐽))) |
33 | 28, 32 | mpbid 147 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐽)) |
34 | 1, 2 | sotri 5026 |
. . . . . 6
⊢
((⟨{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P
(⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩) ∧ (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐽)) → ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽)) |
35 | 27, 33, 34 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽)) |
36 | 20, 35 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ((𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽))) |
37 | 36 | ex 115 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ((⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) → ((𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽)))) |
38 | 3, 37 | mtoi 664 |
. 2
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) |
39 | | opeq1 3780 |
. . . . . . . . . . 11
⊢ (𝐾 = 𝐽 → ⟨𝐾, 1o⟩ = ⟨𝐽,
1o⟩) |
40 | 39 | eceq1d 6573 |
. . . . . . . . . 10
⊢ (𝐾 = 𝐽 → [⟨𝐾, 1o⟩]
~Q = [⟨𝐽, 1o⟩]
~Q ) |
41 | 40 | fveq2d 5521 |
. . . . . . . . 9
⊢ (𝐾 = 𝐽 →
(*Q‘[⟨𝐾, 1o⟩]
~Q ) = (*Q‘[⟨𝐽, 1o⟩]
~Q )) |
42 | 41 | oveq2d 5893 |
. . . . . . . 8
⊢ (𝐾 = 𝐽 → (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) = (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))) |
43 | 42 | breq2d 4017 |
. . . . . . 7
⊢ (𝐾 = 𝐽 → (𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) ↔ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )))) |
44 | 43 | abbidv 2295 |
. . . . . 6
⊢ (𝐾 = 𝐽 → {𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}) |
45 | 42 | breq1d 4015 |
. . . . . . 7
⊢ (𝐾 = 𝐽 → ((𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞 ↔ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞)) |
46 | 45 | abbidv 2295 |
. . . . . 6
⊢ (𝐾 = 𝐽 → {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}) |
47 | 44, 46 | opeq12d 3788 |
. . . . 5
⊢ (𝐾 = 𝐽 → ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩ = ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩) |
48 | | fveq2 5517 |
. . . . 5
⊢ (𝐾 = 𝐽 → (𝐹‘𝐾) = (𝐹‘𝐽)) |
49 | 47, 48 | breq12d 4018 |
. . . 4
⊢ (𝐾 = 𝐽 → (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐾) ↔ ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽))) |
50 | 49 | anbi1d 465 |
. . 3
⊢ (𝐾 = 𝐽 → ((⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩))) |
51 | 50 | adantl 277 |
. 2
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ((⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩))) |
52 | 38, 51 | mtbird 673 |
1
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) |