ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkeqj GIF version

Theorem caucvgprprlemnkeqj 7785
Description: Lemma for caucvgprpr 7807. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnkj.k (𝜑𝐾N)
caucvgprprlemnkj.j (𝜑𝐽N)
caucvgprprlemnkj.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprprlemnkeqj ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Distinct variable groups:   𝑘,𝐹,𝑛   𝐽,𝑝,𝑞   𝐾,𝑝,𝑞   𝑆,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑆(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑞,𝑝,𝑙)   𝐽(𝑢,𝑘,𝑛,𝑙)   𝐾(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprprlemnkeqj
StepHypRef Expression
1 ltsopr 7691 . . . 4 <P Or P
2 ltrelpr 7600 . . . 4 <P ⊆ (P × P)
31, 2son2lpi 5076 . . 3 ¬ ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
4 caucvgprpr.f . . . . . . . . 9 (𝜑𝐹:NP)
5 caucvgprprlemnkj.j . . . . . . . . 9 (𝜑𝐽N)
64, 5ffvelcdmd 5710 . . . . . . . 8 (𝜑 → (𝐹𝐽) ∈ P)
76ad2antrr 488 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽) ∈ P)
85adantr 276 . . . . . . . . . . 11 ((𝜑𝐾 = 𝐽) → 𝐽N)
9 nnnq 7517 . . . . . . . . . . 11 (𝐽N → [⟨𝐽, 1o⟩] ~QQ)
108, 9syl 14 . . . . . . . . . 10 ((𝜑𝐾 = 𝐽) → [⟨𝐽, 1o⟩] ~QQ)
11 recclnq 7487 . . . . . . . . . 10 ([⟨𝐽, 1o⟩] ~QQ → (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q)
1210, 11syl 14 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q)
13 nqprlu 7642 . . . . . . . . 9 ((*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1412, 13syl 14 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1514adantr 276 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
16 ltaddpr 7692 . . . . . . 7 (((𝐹𝐽) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
177, 15, 16syl2anc 411 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
18 simprr 531 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
191, 2sotri 5075 . . . . . 6 (((𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
2017, 18, 19syl2anc 411 . . . . 5 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
21 caucvgprprlemnkj.s . . . . . . . . . 10 (𝜑𝑆Q)
2221adantr 276 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → 𝑆Q)
23 nqprlu 7642 . . . . . . . . 9 (𝑆Q → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
2422, 23syl 14 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
25 ltaddpr 7692 . . . . . . . 8 ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2624, 14, 25syl2anc 411 . . . . . . 7 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2726adantr 276 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
28 simprl 529 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽))
29 addnqpr 7656 . . . . . . . . . 10 ((𝑆Q ∧ (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3022, 12, 29syl2anc 411 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3130breq1d 4053 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
3231adantr 276 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
3328, 32mpbid 147 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽))
341, 2sotri 5075 . . . . . 6 ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
3527, 33, 34syl2anc 411 . . . . 5 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
3620, 35jca 306 . . . 4 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽)))
3736ex 115 . . 3 ((𝜑𝐾 = 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))))
383, 37mtoi 665 . 2 ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
39 opeq1 3818 . . . . . . . . . . 11 (𝐾 = 𝐽 → ⟨𝐾, 1o⟩ = ⟨𝐽, 1o⟩)
4039eceq1d 6646 . . . . . . . . . 10 (𝐾 = 𝐽 → [⟨𝐾, 1o⟩] ~Q = [⟨𝐽, 1o⟩] ~Q )
4140fveq2d 5574 . . . . . . . . 9 (𝐾 = 𝐽 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) = (*Q‘[⟨𝐽, 1o⟩] ~Q ))
4241oveq2d 5950 . . . . . . . 8 (𝐾 = 𝐽 → (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) = (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )))
4342breq2d 4055 . . . . . . 7 (𝐾 = 𝐽 → (𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))))
4443abbidv 2322 . . . . . 6 (𝐾 = 𝐽 → {𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))})
4542breq1d 4053 . . . . . . 7 (𝐾 = 𝐽 → ((𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞))
4645abbidv 2322 . . . . . 6 (𝐾 = 𝐽 → {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞})
4744, 46opeq12d 3826 . . . . 5 (𝐾 = 𝐽 → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩)
48 fveq2 5570 . . . . 5 (𝐾 = 𝐽 → (𝐹𝐾) = (𝐹𝐽))
4947, 48breq12d 4056 . . . 4 (𝐾 = 𝐽 → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ↔ ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽)))
5049anbi1d 465 . . 3 (𝐾 = 𝐽 → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
5150adantl 277 . 2 ((𝜑𝐾 = 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
5238, 51mtbird 674 1 ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  {cab 2190  wral 2483  cop 3635   class class class wbr 4043  wf 5264  cfv 5268  (class class class)co 5934  1oc1o 6485  [cec 6608  Ncnpi 7367   <N clti 7370   ~Q ceq 7374  Qcnq 7375   +Q cplq 7377  *Qcrq 7379   <Q cltq 7380  Pcnp 7386   +P cpp 7388  <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-iplp 7563  df-iltp 7565
This theorem is referenced by:  caucvgprprlemnkj  7787
  Copyright terms: Public domain W3C validator