Proof of Theorem caucvgprprlemnkeqj
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltsopr 7663 | 
. . . 4
⊢
<P Or P | 
| 2 |   | ltrelpr 7572 | 
. . . 4
⊢
<P ⊆ (P ×
P) | 
| 3 | 1, 2 | son2lpi 5066 | 
. . 3
⊢  ¬
((𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)) | 
| 4 |   | caucvgprpr.f | 
. . . . . . . . 9
⊢ (𝜑 → 𝐹:N⟶P) | 
| 5 |   | caucvgprprlemnkj.j | 
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ N) | 
| 6 | 4, 5 | ffvelcdmd 5698 | 
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐽) ∈ P) | 
| 7 | 6 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽) ∈ P) | 
| 8 | 5 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 𝐽 ∈ N) | 
| 9 |   | nnnq 7489 | 
. . . . . . . . . . 11
⊢ (𝐽 ∈ N →
[〈𝐽,
1o〉] ~Q ∈
Q) | 
| 10 | 8, 9 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → [〈𝐽, 1o〉]
~Q ∈ Q) | 
| 11 |   | recclnq 7459 | 
. . . . . . . . . 10
⊢
([〈𝐽,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) | 
| 12 | 10, 11 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) →
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) | 
| 13 |   | nqprlu 7614 | 
. . . . . . . . 9
⊢
((*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 15 | 14 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 16 |   | ltaddpr 7664 | 
. . . . . . 7
⊢ (((𝐹‘𝐽) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 17 | 7, 15, 16 | syl2anc 411 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 18 |   | simprr 531 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) | 
| 19 | 1, 2 | sotri 5065 | 
. . . . . 6
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) → (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) | 
| 20 | 17, 18, 19 | syl2anc 411 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) | 
| 21 |   | caucvgprprlemnkj.s | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Q) | 
| 22 | 21 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 𝑆 ∈ Q) | 
| 23 |   | nqprlu 7614 | 
. . . . . . . . 9
⊢ (𝑆 ∈ Q →
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈
P) | 
| 24 | 22, 23 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈
P) | 
| 25 |   | ltaddpr 7664 | 
. . . . . . . 8
⊢
((〈{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈ P
∧ 〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 26 | 24, 14, 25 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 27 | 26 | adantr 276 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 28 |   | simprl 529 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽)) | 
| 29 |   | addnqpr 7628 | 
. . . . . . . . . 10
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝐽, 1o〉]
~Q ) ∈ Q) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 30 | 22, 12, 29 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 31 | 30 | breq1d 4043 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ↔ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) | 
| 32 | 31 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ↔ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽))) | 
| 33 | 28, 32 | mpbid 147 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) | 
| 34 | 1, 2 | sotri 5065 | 
. . . . . 6
⊢
((〈{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐽)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)) | 
| 35 | 27, 33, 34 | syl2anc 411 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)) | 
| 36 | 20, 35 | jca 306 | 
. . . 4
⊢ (((𝜑 ∧ 𝐾 = 𝐽) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → ((𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽))) | 
| 37 | 36 | ex 115 | 
. . 3
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) → ((𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)))) | 
| 38 | 3, 37 | mtoi 665 | 
. 2
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | 
| 39 |   | opeq1 3808 | 
. . . . . . . . . . 11
⊢ (𝐾 = 𝐽 → 〈𝐾, 1o〉 = 〈𝐽,
1o〉) | 
| 40 | 39 | eceq1d 6628 | 
. . . . . . . . . 10
⊢ (𝐾 = 𝐽 → [〈𝐾, 1o〉]
~Q = [〈𝐽, 1o〉]
~Q ) | 
| 41 | 40 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (𝐾 = 𝐽 →
(*Q‘[〈𝐾, 1o〉]
~Q ) = (*Q‘[〈𝐽, 1o〉]
~Q )) | 
| 42 | 41 | oveq2d 5938 | 
. . . . . . . 8
⊢ (𝐾 = 𝐽 → (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) = (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))) | 
| 43 | 42 | breq2d 4045 | 
. . . . . . 7
⊢ (𝐾 = 𝐽 → (𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )))) | 
| 44 | 43 | abbidv 2314 | 
. . . . . 6
⊢ (𝐾 = 𝐽 → {𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}) | 
| 45 | 42 | breq1d 4043 | 
. . . . . . 7
⊢ (𝐾 = 𝐽 → ((𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞)) | 
| 46 | 45 | abbidv 2314 | 
. . . . . 6
⊢ (𝐾 = 𝐽 → {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}) | 
| 47 | 44, 46 | opeq12d 3816 | 
. . . . 5
⊢ (𝐾 = 𝐽 → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉) | 
| 48 |   | fveq2 5558 | 
. . . . 5
⊢ (𝐾 = 𝐽 → (𝐹‘𝐾) = (𝐹‘𝐽)) | 
| 49 | 47, 48 | breq12d 4046 | 
. . . 4
⊢ (𝐾 = 𝐽 → (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽))) | 
| 50 | 49 | anbi1d 465 | 
. . 3
⊢ (𝐾 = 𝐽 → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) ↔ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉))) | 
| 51 | 50 | adantl 277 | 
. 2
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) ↔ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐽, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐽) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉))) | 
| 52 | 38, 51 | mtbird 674 | 
1
⊢ ((𝜑 ∧ 𝐾 = 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |