ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkeqj GIF version

Theorem caucvgprprlemnkeqj 7691
Description: Lemma for caucvgprpr 7713. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnkj.k (𝜑𝐾N)
caucvgprprlemnkj.j (𝜑𝐽N)
caucvgprprlemnkj.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprprlemnkeqj ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Distinct variable groups:   𝑘,𝐹,𝑛   𝐽,𝑝,𝑞   𝐾,𝑝,𝑞   𝑆,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑆(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑞,𝑝,𝑙)   𝐽(𝑢,𝑘,𝑛,𝑙)   𝐾(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprprlemnkeqj
StepHypRef Expression
1 ltsopr 7597 . . . 4 <P Or P
2 ltrelpr 7506 . . . 4 <P ⊆ (P × P)
31, 2son2lpi 5027 . . 3 ¬ ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
4 caucvgprpr.f . . . . . . . . 9 (𝜑𝐹:NP)
5 caucvgprprlemnkj.j . . . . . . . . 9 (𝜑𝐽N)
64, 5ffvelcdmd 5654 . . . . . . . 8 (𝜑 → (𝐹𝐽) ∈ P)
76ad2antrr 488 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽) ∈ P)
85adantr 276 . . . . . . . . . . 11 ((𝜑𝐾 = 𝐽) → 𝐽N)
9 nnnq 7423 . . . . . . . . . . 11 (𝐽N → [⟨𝐽, 1o⟩] ~QQ)
108, 9syl 14 . . . . . . . . . 10 ((𝜑𝐾 = 𝐽) → [⟨𝐽, 1o⟩] ~QQ)
11 recclnq 7393 . . . . . . . . . 10 ([⟨𝐽, 1o⟩] ~QQ → (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q)
1210, 11syl 14 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q)
13 nqprlu 7548 . . . . . . . . 9 ((*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1412, 13syl 14 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1514adantr 276 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
16 ltaddpr 7598 . . . . . . 7 (((𝐹𝐽) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
177, 15, 16syl2anc 411 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
18 simprr 531 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
191, 2sotri 5026 . . . . . 6 (((𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
2017, 18, 19syl2anc 411 . . . . 5 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
21 caucvgprprlemnkj.s . . . . . . . . . 10 (𝜑𝑆Q)
2221adantr 276 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → 𝑆Q)
23 nqprlu 7548 . . . . . . . . 9 (𝑆Q → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
2422, 23syl 14 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
25 ltaddpr 7598 . . . . . . . 8 ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2624, 14, 25syl2anc 411 . . . . . . 7 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2726adantr 276 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
28 simprl 529 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽))
29 addnqpr 7562 . . . . . . . . . 10 ((𝑆Q ∧ (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3022, 12, 29syl2anc 411 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3130breq1d 4015 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
3231adantr 276 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
3328, 32mpbid 147 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽))
341, 2sotri 5026 . . . . . 6 ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
3527, 33, 34syl2anc 411 . . . . 5 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
3620, 35jca 306 . . . 4 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽)))
3736ex 115 . . 3 ((𝜑𝐾 = 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))))
383, 37mtoi 664 . 2 ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
39 opeq1 3780 . . . . . . . . . . 11 (𝐾 = 𝐽 → ⟨𝐾, 1o⟩ = ⟨𝐽, 1o⟩)
4039eceq1d 6573 . . . . . . . . . 10 (𝐾 = 𝐽 → [⟨𝐾, 1o⟩] ~Q = [⟨𝐽, 1o⟩] ~Q )
4140fveq2d 5521 . . . . . . . . 9 (𝐾 = 𝐽 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) = (*Q‘[⟨𝐽, 1o⟩] ~Q ))
4241oveq2d 5893 . . . . . . . 8 (𝐾 = 𝐽 → (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) = (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )))
4342breq2d 4017 . . . . . . 7 (𝐾 = 𝐽 → (𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))))
4443abbidv 2295 . . . . . 6 (𝐾 = 𝐽 → {𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))})
4542breq1d 4015 . . . . . . 7 (𝐾 = 𝐽 → ((𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞))
4645abbidv 2295 . . . . . 6 (𝐾 = 𝐽 → {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞})
4744, 46opeq12d 3788 . . . . 5 (𝐾 = 𝐽 → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩)
48 fveq2 5517 . . . . 5 (𝐾 = 𝐽 → (𝐹𝐾) = (𝐹𝐽))
4947, 48breq12d 4018 . . . 4 (𝐾 = 𝐽 → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ↔ ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽)))
5049anbi1d 465 . . 3 (𝐾 = 𝐽 → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
5150adantl 277 . 2 ((𝜑𝐾 = 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
5238, 51mtbird 673 1 ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wral 2455  cop 3597   class class class wbr 4005  wf 5214  cfv 5218  (class class class)co 5877  1oc1o 6412  [cec 6535  Ncnpi 7273   <N clti 7276   ~Q ceq 7280  Qcnq 7281   +Q cplq 7283  *Qcrq 7285   <Q cltq 7286  Pcnp 7292   +P cpp 7294  <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  caucvgprprlemnkj  7693
  Copyright terms: Public domain W3C validator