Proof of Theorem caucvgprprlemnjltk
Step | Hyp | Ref
| Expression |
1 | | ltsopr 7537 |
. . 3
⊢
<P Or P |
2 | | ltrelpr 7446 |
. . 3
⊢
<P ⊆ (P ×
P) |
3 | 1, 2 | son2lpi 5000 |
. 2
⊢ ¬
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
4 | | caucvgprprlemnkj.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ Q) |
5 | 4 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 𝑆 ∈
Q) |
6 | | caucvgprprlemnkj.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ N) |
7 | 6 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 𝐾 ∈
N) |
8 | | nnnq 7363 |
. . . . . . . 8
⊢ (𝐾 ∈ N →
[〈𝐾,
1o〉] ~Q ∈
Q) |
9 | | recclnq 7333 |
. . . . . . . 8
⊢
([〈𝐾,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
10 | 7, 8, 9 | 3syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
11 | | ltaddnq 7348 |
. . . . . . 7
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) → 𝑆 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
12 | 5, 10, 11 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 𝑆 <Q
(𝑆
+Q (*Q‘[〈𝐾, 1o〉]
~Q ))) |
13 | | ltnqpri 7535 |
. . . . . 6
⊢ (𝑆 <Q
(𝑆
+Q (*Q‘[〈𝐾, 1o〉]
~Q )) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
〈{𝑝 ∣ 𝑝 <Q
(𝑆
+Q (*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉) |
14 | 12, 13 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
〈{𝑝 ∣ 𝑝 <Q
(𝑆
+Q (*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉) |
15 | | simprl 521 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾)) |
16 | | caucvgprpr.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:N⟶P) |
17 | | caucvgprpr.cau |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
18 | 16, 17 | caucvgprprlemval 7629 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ((𝐹‘𝐽)<P ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉))) |
19 | 18 | simprd 113 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → (𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
20 | 19 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
21 | 1, 2 | sotri 4999 |
. . . . . 6
⊢
((〈{𝑝 ∣
𝑝
<Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ (𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
22 | 15, 20, 21 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
23 | 1, 2 | sotri 4999 |
. . . . 5
⊢
((〈{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P
〈{𝑝 ∣ 𝑝 <Q
(𝑆
+Q (*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
24 | 14, 22, 23 | syl2anc 409 |
. . . 4
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
25 | | simprr 522 |
. . . 4
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
26 | 24, 25 | jca 304 |
. . 3
⊢ (((𝜑 ∧ 𝐽 <N 𝐾) ∧ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
27 | 26 | ex 114 |
. 2
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉))) |
28 | 3, 27 | mtoi 654 |
1
⊢ ((𝜑 ∧ 𝐽 <N 𝐾) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |