ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkltj GIF version

Theorem caucvgprprlemnkltj 7246
Description: Lemma for caucvgprpr 7269. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnkj.k (𝜑𝐾N)
caucvgprprlemnkj.j (𝜑𝐽N)
caucvgprprlemnkj.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprprlemnkltj ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Distinct variable groups:   𝑘,𝐹,𝑛   𝐽,𝑝,𝑞   𝐾,𝑝,𝑞   𝐾,𝑙,𝑝   𝑢,𝐾,𝑞   𝑆,𝑝,𝑞   𝑘,𝑙,𝑛   𝑢,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑆(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑞,𝑝,𝑙)   𝐽(𝑢,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)

Proof of Theorem caucvgprprlemnkltj
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsopr 7153 . . . 4 <P Or P
2 ltrelpr 7062 . . . 4 <P ⊆ (P × P)
31, 2son2lpi 4828 . . 3 ¬ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ∧ (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
4 simprl 498 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾))
5 caucvgprpr.f . . . . . . . . . 10 (𝜑𝐹:NP)
6 caucvgprpr.cau . . . . . . . . . 10 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
75, 6caucvgprprlemval 7245 . . . . . . . . 9 ((𝜑𝐾 <N 𝐽) → ((𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐽)<P ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
87simpld 110 . . . . . . . 8 ((𝜑𝐾 <N 𝐽) → (𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
98adantr 270 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
101, 2sotri 4827 . . . . . . 7 (((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ (𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
114, 9, 10syl2anc 403 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
12 ltaprg 7176 . . . . . . . 8 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1312adantl 271 . . . . . . 7 ((((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
14 caucvgprprlemnkj.s . . . . . . . . 9 (𝜑𝑆Q)
1514ad2antrr 472 . . . . . . . 8 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → 𝑆Q)
16 nqprlu 7104 . . . . . . . 8 (𝑆Q → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
1715, 16syl 14 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
18 caucvgprprlemnkj.j . . . . . . . . 9 (𝜑𝐽N)
195, 18ffvelrnd 5435 . . . . . . . 8 (𝜑 → (𝐹𝐽) ∈ P)
2019ad2antrr 472 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽) ∈ P)
21 caucvgprprlemnkj.k . . . . . . . . 9 (𝜑𝐾N)
22 recnnpr 7105 . . . . . . . . 9 (𝐾N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
2321, 22syl 14 . . . . . . . 8 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
2423ad2antrr 472 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
25 addcomprg 7135 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2625adantl 271 . . . . . . 7 ((((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2713, 17, 20, 24, 26caovord2d 5814 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
2811, 27mpbird 165 . . . . 5 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
29 recnnpr 7105 . . . . . . . . 9 (𝐽N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3018, 29syl 14 . . . . . . . 8 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3130ad2antrr 472 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
32 ltaddpr 7154 . . . . . . 7 (((𝐹𝐽) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
3320, 31, 32syl2anc 403 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
34 simprr 499 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
351, 2sotri 4827 . . . . . 6 (((𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
3633, 34, 35syl2anc 403 . . . . 5 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
3728, 36jca 300 . . . 4 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ∧ (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
3837ex 113 . . 3 ((𝜑𝐾 <N 𝐽) → (((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ∧ (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
393, 38mtoi 625 . 2 ((𝜑𝐾 <N 𝐽) → ¬ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
4014adantr 270 . . . . 5 ((𝜑𝐾 <N 𝐽) → 𝑆Q)
41 nnnq 6979 . . . . . . 7 (𝐾N → [⟨𝐾, 1𝑜⟩] ~QQ)
42 recclnq 6949 . . . . . . 7 ([⟨𝐾, 1𝑜⟩] ~QQ → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q)
4321, 41, 423syl 17 . . . . . 6 (𝜑 → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q)
4443adantr 270 . . . . 5 ((𝜑𝐾 <N 𝐽) → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q)
45 addnqpr 7118 . . . . 5 ((𝑆Q ∧ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
4640, 44, 45syl2anc 403 . . . 4 ((𝜑𝐾 <N 𝐽) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
4746breq1d 3855 . . 3 ((𝜑𝐾 <N 𝐽) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾)))
4847anbi1d 453 . 2 ((𝜑𝐾 <N 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
4939, 48mtbird 633 1 ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438  {cab 2074  wral 2359  cop 3449   class class class wbr 3845  wf 5011  cfv 5015  (class class class)co 5652  1𝑜c1o 6174  [cec 6288  Ncnpi 6829   <N clti 6832   ~Q ceq 6836  Qcnq 6837   +Q cplq 6839  *Qcrq 6841   <Q cltq 6842  Pcnp 6848   +P cpp 6850  <P cltp 6852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-enq0 6981  df-nq0 6982  df-0nq0 6983  df-plq0 6984  df-mq0 6985  df-inp 7023  df-iplp 7025  df-iltp 7027
This theorem is referenced by:  caucvgprprlemnkj  7249
  Copyright terms: Public domain W3C validator