| Step | Hyp | Ref
| Expression |
| 1 | | ltsopr 7663 |
. . . 4
⊢
<P Or P |
| 2 | | ltrelpr 7572 |
. . . 4
⊢
<P ⊆ (P ×
P) |
| 3 | 1, 2 | son2lpi 5066 |
. . 3
⊢ ¬
(〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽) ∧ (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
| 4 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾)) |
| 5 | | caucvgprpr.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:N⟶P) |
| 6 | | caucvgprpr.cau |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
| 7 | 5, 6 | caucvgprprlemval 7755 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ((𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐽)<P ((𝐹‘𝐾) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 8 | 7 | simpld 112 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 9 | 8 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 10 | 1, 2 | sotri 5065 |
. . . . . . 7
⊢
(((〈{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ (𝐹‘𝐾)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 11 | 4, 9, 10 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 12 | | ltaprg 7686 |
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
| 13 | 12 | adantl 277 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P)) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
| 14 | | caucvgprprlemnkj.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ Q) |
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 𝑆 ∈
Q) |
| 16 | | nqprlu 7614 |
. . . . . . . 8
⊢ (𝑆 ∈ Q →
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈
P) |
| 17 | 15, 16 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉 ∈
P) |
| 18 | | caucvgprprlemnkj.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ N) |
| 19 | 5, 18 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐽) ∈ P) |
| 20 | 19 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽) ∈ P) |
| 21 | | caucvgprprlemnkj.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ N) |
| 22 | | recnnpr 7615 |
. . . . . . . . 9
⊢ (𝐾 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 23 | 21, 22 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 24 | 23 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 25 | | addcomprg 7645 |
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 26 | 25 | adantl 277 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P))
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 27 | 13, 17, 20, 24, 26 | caovord2d 6093 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽) ↔ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉))) |
| 28 | 11, 27 | mpbird 167 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽)) |
| 29 | | recnnpr 7615 |
. . . . . . . . 9
⊢ (𝐽 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 30 | 18, 29 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 31 | 30 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) |
| 32 | | ltaddpr 7664 |
. . . . . . 7
⊢ (((𝐹‘𝐽) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 33 | 20, 31, 32 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 34 | | simprr 531 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
| 35 | 1, 2 | sotri 5065 |
. . . . . 6
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) → (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
| 36 | 33, 34, 35 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) |
| 37 | 28, 36 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽) ∧ (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
| 38 | 37 | ex 115 |
. . 3
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) → (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉<P (𝐹‘𝐽) ∧ (𝐹‘𝐽)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉))) |
| 39 | 3, 38 | mtoi 665 |
. 2
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |
| 40 | 14 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → 𝑆 ∈ Q) |
| 41 | | nnnq 7489 |
. . . . . . 7
⊢ (𝐾 ∈ N →
[〈𝐾,
1o〉] ~Q ∈
Q) |
| 42 | | recclnq 7459 |
. . . . . . 7
⊢
([〈𝐾,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
| 43 | 21, 41, 42 | 3syl 17 |
. . . . . 6
⊢ (𝜑 →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
| 44 | 43 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) →
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) |
| 45 | | addnqpr 7628 |
. . . . 5
⊢ ((𝑆 ∈ Q ∧
(*Q‘[〈𝐾, 1o〉]
~Q ) ∈ Q) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 46 | 40, 44, 45 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → 〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 47 | 46 | breq1d 4043 |
. . 3
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ↔ (〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾))) |
| 48 | 47 | anbi1d 465 |
. 2
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ((〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉) ↔ ((〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐾, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉))) |
| 49 | 39, 48 | mtbird 674 |
1
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐽, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) |