Step | Hyp | Ref
| Expression |
1 | | ltsopr 7597 |
. . . 4
⊢
<P Or P |
2 | | ltrelpr 7506 |
. . . 4
⊢
<P ⊆ (P ×
P) |
3 | 1, 2 | son2lpi 5027 |
. . 3
⊢ ¬
(⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ (𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) |
4 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾)) |
5 | | caucvgprpr.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:N⟶P) |
6 | | caucvgprpr.cau |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑛, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑛, 1o⟩]
~Q ) <Q 𝑢}⟩) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P ⟨{𝑙 ∣ 𝑙 <Q
(*Q‘[⟨𝑛, 1o⟩]
~Q )}, {𝑢 ∣
(*Q‘[⟨𝑛, 1o⟩]
~Q ) <Q 𝑢}⟩)))) |
7 | 5, 6 | caucvgprprlemval 7689 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ((𝐹‘𝐾)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩) ∧ (𝐹‘𝐽)<P ((𝐹‘𝐾) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩))) |
8 | 7 | simpld 112 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (𝐹‘𝐾)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
9 | 8 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (𝐹‘𝐾)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
10 | 1, 2 | sotri 5026 |
. . . . . . 7
⊢
(((⟨{𝑝 ∣
𝑝
<Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ (𝐹‘𝐾)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)) → (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
11 | 4, 9, 10 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
12 | | ltaprg 7620 |
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
13 | 12 | adantl 277 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P)) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
14 | | caucvgprprlemnkj.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ Q) |
15 | 14 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → 𝑆 ∈
Q) |
16 | | nqprlu 7548 |
. . . . . . . 8
⊢ (𝑆 ∈ Q →
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∈
P) |
17 | 15, 16 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩ ∈
P) |
18 | | caucvgprprlemnkj.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ N) |
19 | 5, 18 | ffvelcdmd 5654 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐽) ∈ P) |
20 | 19 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (𝐹‘𝐽) ∈ P) |
21 | | caucvgprprlemnkj.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ N) |
22 | | recnnpr 7549 |
. . . . . . . . 9
⊢ (𝐾 ∈ N →
⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
23 | 21, 22 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
24 | 23 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
25 | | addcomprg 7579 |
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
26 | 25 | adantl 277 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P))
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
27 | 13, 17, 20, 24, 26 | caovord2d 6046 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽) ↔ (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩))) |
28 | 11, 27 | mpbird 167 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽)) |
29 | | recnnpr 7549 |
. . . . . . . . 9
⊢ (𝐽 ∈ N →
⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
30 | 18, 29 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
31 | 30 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈
P) |
32 | | ltaddpr 7598 |
. . . . . . 7
⊢ (((𝐹‘𝐽) ∈ P ∧ ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
33 | 20, 31, 32 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (𝐹‘𝐽)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
34 | | simprr 531 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) |
35 | 1, 2 | sotri 5026 |
. . . . . 6
⊢ (((𝐹‘𝐽)<P ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) → (𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) |
36 | 33, 34, 35 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) |
37 | 28, 36 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 <N 𝐽) ∧ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) → (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ (𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) |
38 | 37 | ex 115 |
. . 3
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) → (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩<P (𝐹‘𝐽) ∧ (𝐹‘𝐽)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩))) |
39 | 3, 38 | mtoi 664 |
. 2
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) |
40 | 14 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → 𝑆 ∈ Q) |
41 | | nnnq 7423 |
. . . . . . 7
⊢ (𝐾 ∈ N →
[⟨𝐾,
1o⟩] ~Q ∈
Q) |
42 | | recclnq 7393 |
. . . . . . 7
⊢
([⟨𝐾,
1o⟩] ~Q ∈ Q →
(*Q‘[⟨𝐾, 1o⟩]
~Q ) ∈ Q) |
43 | 21, 41, 42 | 3syl 17 |
. . . . . 6
⊢ (𝜑 →
(*Q‘[⟨𝐾, 1o⟩]
~Q ) ∈ Q) |
44 | 43 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) →
(*Q‘[⟨𝐾, 1o⟩]
~Q ) ∈ Q) |
45 | | addnqpr 7562 |
. . . . 5
⊢ ((𝑆 ∈ Q ∧
(*Q‘[⟨𝐾, 1o⟩]
~Q ) ∈ Q) → ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩ = (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
46 | 40, 44, 45 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩ = (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)) |
47 | 46 | breq1d 4015 |
. . 3
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐾) ↔ (⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾))) |
48 | 47 | anbi1d 465 |
. 2
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ((⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩) ↔ ((⟨{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩
+P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐾, 1o⟩]
~Q ) <Q 𝑞}⟩)<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩))) |
49 | 39, 48 | mtbird 673 |
1
⊢ ((𝜑 ∧ 𝐾 <N 𝐽) → ¬ (⟨{𝑝 ∣ 𝑝 <Q (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q ))}, {𝑞 ∣ (𝑆 +Q
(*Q‘[⟨𝐾, 1o⟩]
~Q )) <Q 𝑞}⟩<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P ⟨{𝑝 ∣ 𝑝 <Q
(*Q‘[⟨𝐽, 1o⟩]
~Q )}, {𝑞 ∣
(*Q‘[⟨𝐽, 1o⟩]
~Q ) <Q 𝑞}⟩)<P
⟨{𝑝 ∣ 𝑝 <Q
𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}⟩)) |