ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkltj GIF version

Theorem caucvgprprlemnkltj 7461
Description: Lemma for caucvgprpr 7484. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnkj.k (𝜑𝐾N)
caucvgprprlemnkj.j (𝜑𝐽N)
caucvgprprlemnkj.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprprlemnkltj ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Distinct variable groups:   𝑘,𝐹,𝑛   𝐽,𝑝,𝑞   𝐾,𝑝,𝑞   𝐾,𝑙,𝑝   𝑢,𝐾,𝑞   𝑆,𝑝,𝑞   𝑘,𝑙,𝑛   𝑢,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑆(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑞,𝑝,𝑙)   𝐽(𝑢,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)

Proof of Theorem caucvgprprlemnkltj
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsopr 7368 . . . 4 <P Or P
2 ltrelpr 7277 . . . 4 <P ⊆ (P × P)
31, 2son2lpi 4903 . . 3 ¬ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ∧ (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
4 simprl 503 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾))
5 caucvgprpr.f . . . . . . . . . 10 (𝜑𝐹:NP)
6 caucvgprpr.cau . . . . . . . . . 10 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
75, 6caucvgprprlemval 7460 . . . . . . . . 9 ((𝜑𝐾 <N 𝐽) → ((𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐽)<P ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)))
87simpld 111 . . . . . . . 8 ((𝜑𝐾 <N 𝐽) → (𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
98adantr 272 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
101, 2sotri 4902 . . . . . . 7 (((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ (𝐹𝐾)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
114, 9, 10syl2anc 406 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
12 ltaprg 7391 . . . . . . . 8 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1312adantl 273 . . . . . . 7 ((((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
14 caucvgprprlemnkj.s . . . . . . . . 9 (𝜑𝑆Q)
1514ad2antrr 477 . . . . . . . 8 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → 𝑆Q)
16 nqprlu 7319 . . . . . . . 8 (𝑆Q → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
1715, 16syl 14 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
18 caucvgprprlemnkj.j . . . . . . . . 9 (𝜑𝐽N)
195, 18ffvelrnd 5522 . . . . . . . 8 (𝜑 → (𝐹𝐽) ∈ P)
2019ad2antrr 477 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽) ∈ P)
21 caucvgprprlemnkj.k . . . . . . . . 9 (𝜑𝐾N)
22 recnnpr 7320 . . . . . . . . 9 (𝐾N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
2321, 22syl 14 . . . . . . . 8 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
2423ad2antrr 477 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
25 addcomprg 7350 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2625adantl 273 . . . . . . 7 ((((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2713, 17, 20, 24, 26caovord2d 5906 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)))
2811, 27mpbird 166 . . . . 5 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
29 recnnpr 7320 . . . . . . . . 9 (𝐽N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3018, 29syl 14 . . . . . . . 8 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3130ad2antrr 477 . . . . . . 7 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
32 ltaddpr 7369 . . . . . . 7 (((𝐹𝐽) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3320, 31, 32syl2anc 406 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
34 simprr 504 . . . . . 6 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
351, 2sotri 4902 . . . . . 6 (((𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
3633, 34, 35syl2anc 406 . . . . 5 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
3728, 36jca 302 . . . 4 (((𝜑𝐾 <N 𝐽) ∧ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ∧ (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
3837ex 114 . . 3 ((𝜑𝐾 <N 𝐽) → (((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽) ∧ (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
393, 38mtoi 636 . 2 ((𝜑𝐾 <N 𝐽) → ¬ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
4014adantr 272 . . . . 5 ((𝜑𝐾 <N 𝐽) → 𝑆Q)
41 nnnq 7194 . . . . . . 7 (𝐾N → [⟨𝐾, 1o⟩] ~QQ)
42 recclnq 7164 . . . . . . 7 ([⟨𝐾, 1o⟩] ~QQ → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
4321, 41, 423syl 17 . . . . . 6 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
4443adantr 272 . . . . 5 ((𝜑𝐾 <N 𝐽) → (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q)
45 addnqpr 7333 . . . . 5 ((𝑆Q ∧ (*Q‘[⟨𝐾, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
4640, 44, 45syl2anc 406 . . . 4 ((𝜑𝐾 <N 𝐽) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩))
4746breq1d 3907 . . 3 ((𝜑𝐾 <N 𝐽) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾)))
4847anbi1d 458 . 2 ((𝜑𝐾 <N 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
4939, 48mtbird 645 1 ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  {cab 2101  wral 2391  cop 3498   class class class wbr 3897  wf 5087  cfv 5091  (class class class)co 5740  1oc1o 6272  [cec 6393  Ncnpi 7044   <N clti 7047   ~Q ceq 7051  Qcnq 7052   +Q cplq 7054  *Qcrq 7056   <Q cltq 7057  Pcnp 7063   +P cpp 7065  <P cltp 7067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-eprel 4179  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-1o 6279  df-2o 6280  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-pli 7077  df-mi 7078  df-lti 7079  df-plpq 7116  df-mpq 7117  df-enq 7119  df-nqqs 7120  df-plqqs 7121  df-mqqs 7122  df-1nqqs 7123  df-rq 7124  df-ltnqqs 7125  df-enq0 7196  df-nq0 7197  df-0nq0 7198  df-plq0 7199  df-mq0 7200  df-inp 7238  df-iplp 7240  df-iltp 7242
This theorem is referenced by:  caucvgprprlemnkj  7464
  Copyright terms: Public domain W3C validator