Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelstrsl | GIF version |
Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
opelstrsl.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
opelstrsl.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
opelstrsl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
opelstrsl.el | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) |
Ref | Expression |
---|---|
opelstrsl | ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelstrsl.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | opelstrsl.s | . . 3 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
3 | structex 12406 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
5 | structfung 12411 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → Fun ◡◡𝑆) |
7 | opelstrsl.el | . 2 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) | |
8 | opelstrsl.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
9 | 1, 4, 6, 7, 8 | strslfv2d 12436 | 1 ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 〈cop 3579 class class class wbr 3982 ◡ccnv 4603 Fun wfun 5182 ‘cfv 5188 ℕcn 8857 Struct cstr 12390 ndxcnx 12391 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-struct 12396 df-slot 12398 |
This theorem is referenced by: opelstrbas 12492 2strop1g 12500 rngplusgg 12512 rngmulrg 12513 srngplusgd 12519 srngmulrd 12520 srnginvld 12521 lmodplusgd 12530 lmodscad 12531 lmodvscad 12532 ipsaddgd 12538 ipsmulrd 12539 ipsscad 12540 ipsvscad 12541 ipsipd 12542 topgrpplusgd 12548 topgrptsetd 12549 |
Copyright terms: Public domain | W3C validator |