Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelstrsl | GIF version |
Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
opelstrsl.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
opelstrsl.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
opelstrsl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
opelstrsl.el | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) |
Ref | Expression |
---|---|
opelstrsl | ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelstrsl.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | opelstrsl.s | . . 3 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
3 | structex 12439 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
5 | structfung 12444 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → Fun ◡◡𝑆) |
7 | opelstrsl.el | . 2 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) | |
8 | opelstrsl.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
9 | 1, 4, 6, 7, 8 | strslfv2d 12469 | 1 ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 Vcvv 2735 〈cop 3592 class class class wbr 3998 ◡ccnv 4619 Fun wfun 5202 ‘cfv 5208 ℕcn 8890 Struct cstr 12423 ndxcnx 12424 Slot cslot 12426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-struct 12429 df-slot 12431 |
This theorem is referenced by: opelstrbas 12526 2strop1g 12534 rngplusgg 12546 rngmulrg 12547 srngplusgd 12553 srngmulrd 12554 srnginvld 12555 lmodplusgd 12567 lmodscad 12568 lmodvscad 12569 ipsaddgd 12575 ipsmulrd 12576 ipsscad 12577 ipsvscad 12578 ipsipd 12579 topgrpplusgd 12592 topgrptsetd 12593 |
Copyright terms: Public domain | W3C validator |