![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelstrsl | GIF version |
Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
opelstrsl.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
opelstrsl.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
opelstrsl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
opelstrsl.el | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) |
Ref | Expression |
---|---|
opelstrsl | ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelstrsl.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | opelstrsl.s | . . 3 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
3 | structex 12633 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
5 | structfung 12638 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → Fun ◡◡𝑆) |
7 | opelstrsl.el | . 2 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) | |
8 | opelstrsl.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
9 | 1, 4, 6, 7, 8 | strslfv2d 12664 | 1 ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 class class class wbr 4030 ◡ccnv 4659 Fun wfun 5249 ‘cfv 5255 ℕcn 8984 Struct cstr 12617 ndxcnx 12618 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-struct 12623 df-slot 12625 |
This theorem is referenced by: opelstrbas 12736 2strop1g 12744 rngplusgg 12757 rngmulrg 12758 srngplusgd 12768 srngmulrd 12769 srnginvld 12770 lmodplusgd 12786 lmodscad 12787 lmodvscad 12788 ipsaddgd 12798 ipsmulrd 12799 ipsscad 12800 ipsvscad 12801 ipsipd 12802 topgrpplusgd 12818 topgrptsetd 12819 psrplusgg 14173 |
Copyright terms: Public domain | W3C validator |