| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelstrsl | GIF version | ||
| Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| opelstrsl.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| opelstrsl.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| opelstrsl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
| opelstrsl.el | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| opelstrsl | ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelstrsl.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | opelstrsl.s | . . 3 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 3 | structex 12877 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 5 | structfung 12882 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
| 6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → Fun ◡◡𝑆) |
| 7 | opelstrsl.el | . 2 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) | |
| 8 | opelstrsl.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
| 9 | 1, 4, 6, 7, 8 | strslfv2d 12908 | 1 ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 〈cop 3636 class class class wbr 4045 ◡ccnv 4675 Fun wfun 5266 ‘cfv 5272 ℕcn 9038 Struct cstr 12861 ndxcnx 12862 Slot cslot 12864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fv 5280 df-struct 12867 df-slot 12869 |
| This theorem is referenced by: opelstrbas 12980 2strop1g 12989 rngplusgg 13002 rngmulrg 13003 srngplusgd 13013 srngmulrd 13014 srnginvld 13015 lmodplusgd 13031 lmodscad 13032 lmodvscad 13033 ipsaddgd 13043 ipsmulrd 13044 ipsscad 13045 ipsvscad 13046 ipsipd 13047 topgrpplusgd 13063 topgrptsetd 13064 psrplusgg 14473 edgfiedgval2dom 15665 |
| Copyright terms: Public domain | W3C validator |