| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelstrsl | GIF version | ||
| Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| opelstrsl.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| opelstrsl.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| opelstrsl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
| opelstrsl.el | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| opelstrsl | ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelstrsl.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | opelstrsl.s | . . 3 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 3 | structex 13044 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 5 | structfung 13049 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
| 6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → Fun ◡◡𝑆) |
| 7 | opelstrsl.el | . 2 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) | |
| 8 | opelstrsl.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
| 9 | 1, 4, 6, 7, 8 | strslfv2d 13075 | 1 ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 class class class wbr 4083 ◡ccnv 4718 Fun wfun 5312 ‘cfv 5318 ℕcn 9110 Struct cstr 13028 ndxcnx 13029 Slot cslot 13031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-struct 13034 df-slot 13036 |
| This theorem is referenced by: opelstrbas 13148 2strop1g 13157 rngplusgg 13170 rngmulrg 13171 srngplusgd 13181 srngmulrd 13182 srnginvld 13183 lmodplusgd 13199 lmodscad 13200 lmodvscad 13201 ipsaddgd 13211 ipsmulrd 13212 ipsscad 13213 ipsvscad 13214 ipsipd 13215 topgrpplusgd 13231 topgrptsetd 13232 psrplusgg 14642 edgfiedgval2dom 15836 |
| Copyright terms: Public domain | W3C validator |