ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrsl GIF version

Theorem opelstrsl 12735
Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
opelstrsl.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
opelstrsl.s (𝜑𝑆 Struct 𝑋)
opelstrsl.v (𝜑𝑉𝑌)
opelstrsl.el (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)
Assertion
Ref Expression
opelstrsl (𝜑𝑉 = (𝐸𝑆))

Proof of Theorem opelstrsl
StepHypRef Expression
1 opelstrsl.e . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 opelstrsl.s . . 3 (𝜑𝑆 Struct 𝑋)
3 structex 12633 . . 3 (𝑆 Struct 𝑋𝑆 ∈ V)
42, 3syl 14 . 2 (𝜑𝑆 ∈ V)
5 structfung 12638 . . 3 (𝑆 Struct 𝑋 → Fun 𝑆)
62, 5syl 14 . 2 (𝜑 → Fun 𝑆)
7 opelstrsl.el . 2 (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)
8 opelstrsl.v . 2 (𝜑𝑉𝑌)
91, 4, 6, 7, 8strslfv2d 12664 1 (𝜑𝑉 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cop 3622   class class class wbr 4030  ccnv 4659  Fun wfun 5249  cfv 5255  cn 8984   Struct cstr 12617  ndxcnx 12618  Slot cslot 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-struct 12623  df-slot 12625
This theorem is referenced by:  opelstrbas  12736  2strop1g  12744  rngplusgg  12757  rngmulrg  12758  srngplusgd  12768  srngmulrd  12769  srnginvld  12770  lmodplusgd  12786  lmodscad  12787  lmodvscad  12788  ipsaddgd  12798  ipsmulrd  12799  ipsscad  12800  ipsvscad  12801  ipsipd  12802  topgrpplusgd  12818  topgrptsetd  12819  psrplusgg  14173
  Copyright terms: Public domain W3C validator