| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelstrsl | GIF version | ||
| Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| opelstrsl.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| opelstrsl.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| opelstrsl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
| opelstrsl.el | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| opelstrsl | ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelstrsl.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | opelstrsl.s | . . 3 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 3 | structex 12715 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 5 | structfung 12720 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
| 6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → Fun ◡◡𝑆) |
| 7 | opelstrsl.el | . 2 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) | |
| 8 | opelstrsl.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
| 9 | 1, 4, 6, 7, 8 | strslfv2d 12746 | 1 ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 class class class wbr 4034 ◡ccnv 4663 Fun wfun 5253 ‘cfv 5259 ℕcn 9007 Struct cstr 12699 ndxcnx 12700 Slot cslot 12702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-struct 12705 df-slot 12707 |
| This theorem is referenced by: opelstrbas 12818 2strop1g 12826 rngplusgg 12839 rngmulrg 12840 srngplusgd 12850 srngmulrd 12851 srnginvld 12852 lmodplusgd 12868 lmodscad 12869 lmodvscad 12870 ipsaddgd 12880 ipsmulrd 12881 ipsscad 12882 ipsvscad 12883 ipsipd 12884 topgrpplusgd 12900 topgrptsetd 12901 psrplusgg 14306 |
| Copyright terms: Public domain | W3C validator |