ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext GIF version

Theorem strext 12808
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strext.c (𝜑𝐶 ∈ (ℤ𝐵))
Assertion
Ref Expression
strext (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12717 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 1011 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 1011 . 2 (𝜑𝐴 ∈ ℕ)
64simp2d 1012 . . 3 (𝜑𝐵 ∈ ℕ)
7 strext.c . . 3 (𝜑𝐶 ∈ (ℤ𝐵))
8 eluznn 9691 . . 3 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ ℕ)
96, 7, 8syl2anc 411 . 2 (𝜑𝐶 ∈ ℕ)
105nnred 9020 . . 3 (𝜑𝐴 ∈ ℝ)
116nnred 9020 . . 3 (𝜑𝐵 ∈ ℝ)
129nnred 9020 . . 3 (𝜑𝐶 ∈ ℝ)
134simp3d 1013 . . 3 (𝜑𝐴𝐵)
14 eluzle 9630 . . . 4 (𝐶 ∈ (ℤ𝐵) → 𝐵𝐶)
157, 14syl 14 . . 3 (𝜑𝐵𝐶)
1610, 11, 12, 13, 15letrd 8167 . 2 (𝜑𝐴𝐶)
173simp2d 1012 . 2 (𝜑 → Fun (𝐹 ∖ {∅}))
18 structex 12715 . . 3 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
191, 18syl 14 . 2 (𝜑𝐹 ∈ V)
203simp3d 1013 . . 3 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
21 fzss2 10156 . . . 4 (𝐶 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶))
227, 21syl 14 . . 3 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶))
2320, 22sstrd 3194 . 2 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶))
24 isstructr 12718 . 2 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct ⟨𝐴, 𝐶⟩)
255, 9, 16, 17, 19, 23, 24syl33anc 1264 1 (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2167  Vcvv 2763  cdif 3154  wss 3157  c0 3451  {csn 3623  cop 3626   class class class wbr 4034  dom cdm 4664  Fun wfun 5253  cfv 5259  (class class class)co 5925  cle 8079  cn 9007  cuz 9618  ...cfz 10100   Struct cstr 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator