![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strext | GIF version |
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.) |
Ref | Expression |
---|---|
strext.f | ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) |
strext.c | ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) |
Ref | Expression |
---|---|
strext | ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strext.f | . . . . 5 ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) | |
2 | isstructim 12632 | . . . . 5 ⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) |
4 | 3 | simp1d 1011 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵)) |
5 | 4 | simp1d 1011 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) |
6 | 4 | simp2d 1012 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
7 | strext.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) | |
8 | eluznn 9665 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐶 ∈ ℕ) | |
9 | 6, 7, 8 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℕ) |
10 | 5 | nnred 8995 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
11 | 6 | nnred 8995 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
12 | 9 | nnred 8995 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | 4 | simp3d 1013 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
14 | eluzle 9604 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → 𝐵 ≤ 𝐶) | |
15 | 7, 14 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
16 | 10, 11, 12, 13, 15 | letrd 8143 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
17 | 3 | simp2d 1012 | . 2 ⊢ (𝜑 → Fun (𝐹 ∖ {∅})) |
18 | structex 12630 | . . 3 ⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → 𝐹 ∈ V) | |
19 | 1, 18 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
20 | 3 | simp3d 1013 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵)) |
21 | fzss2 10130 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶)) | |
22 | 7, 21 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶)) |
23 | 20, 22 | sstrd 3189 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶)) |
24 | isstructr 12633 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴 ≤ 𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct 〈𝐴, 𝐶〉) | |
25 | 5, 9, 16, 17, 19, 23, 24 | syl33anc 1264 | 1 ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ⊆ wss 3153 ∅c0 3446 {csn 3618 〈cop 3621 class class class wbr 4029 dom cdm 4659 Fun wfun 5248 ‘cfv 5254 (class class class)co 5918 ≤ cle 8055 ℕcn 8982 ℤ≥cuz 9592 ...cfz 10074 Struct cstr 12614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 df-uz 9593 df-fz 10075 df-struct 12620 |
This theorem is referenced by: cnfldstr 14049 |
Copyright terms: Public domain | W3C validator |