ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext GIF version

Theorem strext 12723
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strext.c (𝜑𝐶 ∈ (ℤ𝐵))
Assertion
Ref Expression
strext (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12632 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 1011 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 1011 . 2 (𝜑𝐴 ∈ ℕ)
64simp2d 1012 . . 3 (𝜑𝐵 ∈ ℕ)
7 strext.c . . 3 (𝜑𝐶 ∈ (ℤ𝐵))
8 eluznn 9665 . . 3 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ ℕ)
96, 7, 8syl2anc 411 . 2 (𝜑𝐶 ∈ ℕ)
105nnred 8995 . . 3 (𝜑𝐴 ∈ ℝ)
116nnred 8995 . . 3 (𝜑𝐵 ∈ ℝ)
129nnred 8995 . . 3 (𝜑𝐶 ∈ ℝ)
134simp3d 1013 . . 3 (𝜑𝐴𝐵)
14 eluzle 9604 . . . 4 (𝐶 ∈ (ℤ𝐵) → 𝐵𝐶)
157, 14syl 14 . . 3 (𝜑𝐵𝐶)
1610, 11, 12, 13, 15letrd 8143 . 2 (𝜑𝐴𝐶)
173simp2d 1012 . 2 (𝜑 → Fun (𝐹 ∖ {∅}))
18 structex 12630 . . 3 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
191, 18syl 14 . 2 (𝜑𝐹 ∈ V)
203simp3d 1013 . . 3 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
21 fzss2 10130 . . . 4 (𝐶 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶))
227, 21syl 14 . . 3 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶))
2320, 22sstrd 3189 . 2 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶))
24 isstructr 12633 . 2 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct ⟨𝐴, 𝐶⟩)
255, 9, 16, 17, 19, 23, 24syl33anc 1264 1 (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2164  Vcvv 2760  cdif 3150  wss 3153  c0 3446  {csn 3618  cop 3621   class class class wbr 4029  dom cdm 4659  Fun wfun 5248  cfv 5254  (class class class)co 5918  cle 8055  cn 8982  cuz 9592  ...cfz 10074   Struct cstr 12614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-fz 10075  df-struct 12620
This theorem is referenced by:  cnfldstr  14049
  Copyright terms: Public domain W3C validator