![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strext | GIF version |
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.) |
Ref | Expression |
---|---|
strext.f | ⊢ (𝜑 → 𝐹 Struct ⟨𝐴, 𝐵⟩) |
strext.c | ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) |
Ref | Expression |
---|---|
strext | ⊢ (𝜑 → 𝐹 Struct ⟨𝐴, 𝐶⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strext.f | . . . . 5 ⊢ (𝜑 → 𝐹 Struct ⟨𝐴, 𝐵⟩) | |
2 | isstructim 12476 | . . . . 5 ⊢ (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) |
4 | 3 | simp1d 1009 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵)) |
5 | 4 | simp1d 1009 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) |
6 | 4 | simp2d 1010 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
7 | strext.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) | |
8 | eluznn 9600 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐶 ∈ ℕ) | |
9 | 6, 7, 8 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℕ) |
10 | 5 | nnred 8932 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
11 | 6 | nnred 8932 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
12 | 9 | nnred 8932 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | 4 | simp3d 1011 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
14 | eluzle 9540 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → 𝐵 ≤ 𝐶) | |
15 | 7, 14 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
16 | 10, 11, 12, 13, 15 | letrd 8081 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
17 | 3 | simp2d 1010 | . 2 ⊢ (𝜑 → Fun (𝐹 ∖ {∅})) |
18 | structex 12474 | . . 3 ⊢ (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V) | |
19 | 1, 18 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
20 | 3 | simp3d 1011 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵)) |
21 | fzss2 10064 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶)) | |
22 | 7, 21 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶)) |
23 | 20, 22 | sstrd 3166 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶)) |
24 | isstructr 12477 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴 ≤ 𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct ⟨𝐴, 𝐶⟩) | |
25 | 5, 9, 16, 17, 19, 23, 24 | syl33anc 1253 | 1 ⊢ (𝜑 → 𝐹 Struct ⟨𝐴, 𝐶⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 ∈ wcel 2148 Vcvv 2738 ∖ cdif 3127 ⊆ wss 3130 ∅c0 3423 {csn 3593 ⟨cop 3596 class class class wbr 4004 dom cdm 4627 Fun wfun 5211 ‘cfv 5217 (class class class)co 5875 ≤ cle 7993 ℕcn 8919 ℤ≥cuz 9528 ...cfz 10008 Struct cstr 12458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-z 9254 df-uz 9529 df-fz 10009 df-struct 12464 |
This theorem is referenced by: cnfldstr 13460 |
Copyright terms: Public domain | W3C validator |