ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext GIF version

Theorem strext 13052
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strext.c (𝜑𝐶 ∈ (ℤ𝐵))
Assertion
Ref Expression
strext (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12961 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 1012 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 1012 . 2 (𝜑𝐴 ∈ ℕ)
64simp2d 1013 . . 3 (𝜑𝐵 ∈ ℕ)
7 strext.c . . 3 (𝜑𝐶 ∈ (ℤ𝐵))
8 eluznn 9756 . . 3 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ ℕ)
96, 7, 8syl2anc 411 . 2 (𝜑𝐶 ∈ ℕ)
105nnred 9084 . . 3 (𝜑𝐴 ∈ ℝ)
116nnred 9084 . . 3 (𝜑𝐵 ∈ ℝ)
129nnred 9084 . . 3 (𝜑𝐶 ∈ ℝ)
134simp3d 1014 . . 3 (𝜑𝐴𝐵)
14 eluzle 9695 . . . 4 (𝐶 ∈ (ℤ𝐵) → 𝐵𝐶)
157, 14syl 14 . . 3 (𝜑𝐵𝐶)
1610, 11, 12, 13, 15letrd 8231 . 2 (𝜑𝐴𝐶)
173simp2d 1013 . 2 (𝜑 → Fun (𝐹 ∖ {∅}))
18 structex 12959 . . 3 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
191, 18syl 14 . 2 (𝜑𝐹 ∈ V)
203simp3d 1014 . . 3 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
21 fzss2 10221 . . . 4 (𝐶 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶))
227, 21syl 14 . . 3 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶))
2320, 22sstrd 3211 . 2 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶))
24 isstructr 12962 . 2 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct ⟨𝐴, 𝐶⟩)
255, 9, 16, 17, 19, 23, 24syl33anc 1265 1 (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2178  Vcvv 2776  cdif 3171  wss 3174  c0 3468  {csn 3643  cop 3646   class class class wbr 4059  dom cdm 4693  Fun wfun 5284  cfv 5290  (class class class)co 5967  cle 8143  cn 9071  cuz 9683  ...cfz 10165   Struct cstr 12943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-z 9408  df-uz 9684  df-fz 10166  df-struct 12949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator