ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext GIF version

Theorem strext 12726
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strext.c (𝜑𝐶 ∈ (ℤ𝐵))
Assertion
Ref Expression
strext (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12635 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 1011 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 1011 . 2 (𝜑𝐴 ∈ ℕ)
64simp2d 1012 . . 3 (𝜑𝐵 ∈ ℕ)
7 strext.c . . 3 (𝜑𝐶 ∈ (ℤ𝐵))
8 eluznn 9668 . . 3 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ ℕ)
96, 7, 8syl2anc 411 . 2 (𝜑𝐶 ∈ ℕ)
105nnred 8997 . . 3 (𝜑𝐴 ∈ ℝ)
116nnred 8997 . . 3 (𝜑𝐵 ∈ ℝ)
129nnred 8997 . . 3 (𝜑𝐶 ∈ ℝ)
134simp3d 1013 . . 3 (𝜑𝐴𝐵)
14 eluzle 9607 . . . 4 (𝐶 ∈ (ℤ𝐵) → 𝐵𝐶)
157, 14syl 14 . . 3 (𝜑𝐵𝐶)
1610, 11, 12, 13, 15letrd 8145 . 2 (𝜑𝐴𝐶)
173simp2d 1012 . 2 (𝜑 → Fun (𝐹 ∖ {∅}))
18 structex 12633 . . 3 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
191, 18syl 14 . 2 (𝜑𝐹 ∈ V)
203simp3d 1013 . . 3 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
21 fzss2 10133 . . . 4 (𝐶 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶))
227, 21syl 14 . . 3 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶))
2320, 22sstrd 3190 . 2 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶))
24 isstructr 12636 . 2 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct ⟨𝐴, 𝐶⟩)
255, 9, 16, 17, 19, 23, 24syl33anc 1264 1 (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2164  Vcvv 2760  cdif 3151  wss 3154  c0 3447  {csn 3619  cop 3622   class class class wbr 4030  dom cdm 4660  Fun wfun 5249  cfv 5255  (class class class)co 5919  cle 8057  cn 8984  cuz 9595  ...cfz 10077   Struct cstr 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-z 9321  df-uz 9596  df-fz 10078  df-struct 12623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator