ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext GIF version

Theorem strext 12937
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strext.c (𝜑𝐶 ∈ (ℤ𝐵))
Assertion
Ref Expression
strext (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12846 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 1012 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 1012 . 2 (𝜑𝐴 ∈ ℕ)
64simp2d 1013 . . 3 (𝜑𝐵 ∈ ℕ)
7 strext.c . . 3 (𝜑𝐶 ∈ (ℤ𝐵))
8 eluznn 9721 . . 3 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ ℕ)
96, 7, 8syl2anc 411 . 2 (𝜑𝐶 ∈ ℕ)
105nnred 9049 . . 3 (𝜑𝐴 ∈ ℝ)
116nnred 9049 . . 3 (𝜑𝐵 ∈ ℝ)
129nnred 9049 . . 3 (𝜑𝐶 ∈ ℝ)
134simp3d 1014 . . 3 (𝜑𝐴𝐵)
14 eluzle 9660 . . . 4 (𝐶 ∈ (ℤ𝐵) → 𝐵𝐶)
157, 14syl 14 . . 3 (𝜑𝐵𝐶)
1610, 11, 12, 13, 15letrd 8196 . 2 (𝜑𝐴𝐶)
173simp2d 1013 . 2 (𝜑 → Fun (𝐹 ∖ {∅}))
18 structex 12844 . . 3 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
191, 18syl 14 . 2 (𝜑𝐹 ∈ V)
203simp3d 1014 . . 3 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
21 fzss2 10186 . . . 4 (𝐶 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶))
227, 21syl 14 . . 3 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶))
2320, 22sstrd 3203 . 2 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶))
24 isstructr 12847 . 2 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct ⟨𝐴, 𝐶⟩)
255, 9, 16, 17, 19, 23, 24syl33anc 1265 1 (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2176  Vcvv 2772  cdif 3163  wss 3166  c0 3460  {csn 3633  cop 3636   class class class wbr 4044  dom cdm 4675  Fun wfun 5265  cfv 5271  (class class class)co 5944  cle 8108  cn 9036  cuz 9648  ...cfz 10130   Struct cstr 12828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-z 9373  df-uz 9649  df-fz 10131  df-struct 12834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator