![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strext | GIF version |
Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.) |
Ref | Expression |
---|---|
strext.f | ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) |
strext.c | ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) |
Ref | Expression |
---|---|
strext | ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strext.f | . . . . 5 ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) | |
2 | isstructim 12489 | . . . . 5 ⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) |
4 | 3 | simp1d 1010 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵)) |
5 | 4 | simp1d 1010 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) |
6 | 4 | simp2d 1011 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
7 | strext.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) | |
8 | eluznn 9613 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐶 ∈ ℕ) | |
9 | 6, 7, 8 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℕ) |
10 | 5 | nnred 8945 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
11 | 6 | nnred 8945 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
12 | 9 | nnred 8945 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | 4 | simp3d 1012 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
14 | eluzle 9553 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → 𝐵 ≤ 𝐶) | |
15 | 7, 14 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
16 | 10, 11, 12, 13, 15 | letrd 8094 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
17 | 3 | simp2d 1011 | . 2 ⊢ (𝜑 → Fun (𝐹 ∖ {∅})) |
18 | structex 12487 | . . 3 ⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → 𝐹 ∈ V) | |
19 | 1, 18 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
20 | 3 | simp3d 1012 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵)) |
21 | fzss2 10077 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶)) | |
22 | 7, 21 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶)) |
23 | 20, 22 | sstrd 3177 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶)) |
24 | isstructr 12490 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴 ≤ 𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct 〈𝐴, 𝐶〉) | |
25 | 5, 9, 16, 17, 19, 23, 24 | syl33anc 1263 | 1 ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 979 ∈ wcel 2158 Vcvv 2749 ∖ cdif 3138 ⊆ wss 3141 ∅c0 3434 {csn 3604 〈cop 3607 class class class wbr 4015 dom cdm 4638 Fun wfun 5222 ‘cfv 5228 (class class class)co 5888 ≤ cle 8006 ℕcn 8932 ℤ≥cuz 9541 ...cfz 10021 Struct cstr 12471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-z 9267 df-uz 9542 df-fz 10022 df-struct 12477 |
This theorem is referenced by: cnfldstr 13714 |
Copyright terms: Public domain | W3C validator |