| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strext | GIF version | ||
| Description: Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.) |
| Ref | Expression |
|---|---|
| strext.f | ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) |
| strext.c | ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) |
| Ref | Expression |
|---|---|
| strext | ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strext.f | . . . . 5 ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) | |
| 2 | isstructim 12846 | . . . . 5 ⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) |
| 4 | 3 | simp1d 1012 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵)) |
| 5 | 4 | simp1d 1012 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| 6 | 4 | simp2d 1013 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| 7 | strext.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵)) | |
| 8 | eluznn 9721 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐶 ∈ ℕ) | |
| 9 | 6, 7, 8 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| 10 | 5 | nnred 9049 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 11 | 6 | nnred 9049 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 12 | 9 | nnred 9049 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 13 | 4 | simp3d 1014 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 14 | eluzle 9660 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → 𝐵 ≤ 𝐶) | |
| 15 | 7, 14 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| 16 | 10, 11, 12, 13, 15 | letrd 8196 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| 17 | 3 | simp2d 1013 | . 2 ⊢ (𝜑 → Fun (𝐹 ∖ {∅})) |
| 18 | structex 12844 | . . 3 ⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → 𝐹 ∈ V) | |
| 19 | 1, 18 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 20 | 3 | simp3d 1014 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵)) |
| 21 | fzss2 10186 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐶)) | |
| 22 | 7, 21 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐶)) |
| 23 | 20, 22 | sstrd 3203 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐶)) |
| 24 | isstructr 12847 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝐴 ≤ 𝐶) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ V ∧ dom 𝐹 ⊆ (𝐴...𝐶))) → 𝐹 Struct 〈𝐴, 𝐶〉) | |
| 25 | 5, 9, 16, 17, 19, 23, 24 | syl33anc 1265 | 1 ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 ∈ wcel 2176 Vcvv 2772 ∖ cdif 3163 ⊆ wss 3166 ∅c0 3460 {csn 3633 〈cop 3636 class class class wbr 4044 dom cdm 4675 Fun wfun 5265 ‘cfv 5271 (class class class)co 5944 ≤ cle 8108 ℕcn 9036 ℤ≥cuz 9648 ...cfz 10130 Struct cstr 12828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-z 9373 df-uz 9649 df-fz 10131 df-struct 12834 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |