Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1onOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 1on 8380 as of 30-Nov-2024. (Contributed by NM, 29-Oct-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1onOLD | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8368 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6356 | . . 3 ⊢ ∅ ∈ On | |
3 | 2 | onsuci 7753 | . 2 ⊢ suc ∅ ∈ On |
4 | 1, 3 | eqeltri 2833 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∅c0 4270 Oncon0 6303 suc csuc 6305 1oc1o 8361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-tr 5211 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-ord 6306 df-on 6307 df-suc 6309 df-1o 8368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |