![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1onOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 1on 8507 as of 30-Nov-2024. (Contributed by NM, 29-Oct-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1onOLD | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8495 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6429 | . . 3 ⊢ ∅ ∈ On | |
3 | 2 | onsuci 7847 | . 2 ⊢ suc ∅ ∈ On |
4 | 1, 3 | eqeltri 2821 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∅c0 4324 Oncon0 6375 suc csuc 6377 1oc1o 8488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-ord 6378 df-on 6379 df-suc 6381 df-1o 8495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |