| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version | ||
| Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7675. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 2on | ⊢ 2o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8396 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8407 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2oex 8406 | . . . 4 ⊢ 2o ∈ V | |
| 4 | 1, 3 | eqeltrri 2825 | . . 3 ⊢ suc 1o ∈ V |
| 5 | sucexeloni 7749 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc 1o ∈ On |
| 7 | 1, 6 | eqeltri 2824 | 1 ⊢ 2o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 Oncon0 6311 suc csuc 6313 1oc1o 8388 2oc2o 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-suc 6317 df-1o 8395 df-2o 8396 |
| This theorem is referenced by: ord3 8410 3on 8411 ord2eln012 8422 o2p2e4 8466 oneo 8506 2onn 8567 nneob 8581 en3 9185 infxpenc 9931 infxpenc2 9935 mappwen 10025 pwdjuen 10095 ackbij1lem5 10136 sdom2en01 10215 fin1a2lem4 10316 fin1a2lem6 10318 xpsrnbas 17493 xpsadd 17496 xpsmul 17497 xpsvsca 17499 xpsle 17501 cat1 18022 xpsmnd 18669 xpsgrp 18956 efgval 19614 efgtf 19619 frgpcpbl 19656 frgp0 19657 frgpeccl 19658 frgpadd 19660 frgpmhm 19662 vrgpf 19665 vrgpinv 19666 frgpupf 19670 frgpup1 19672 frgpup2 19673 frgpup3lem 19674 frgpnabllem1 19770 frgpnabllem2 19771 xpsrngd 20082 xpsringd 20235 xpstopnlem1 23712 xpstps 23713 xpstopnlem2 23714 xpsxmetlem 24283 xpsdsval 24285 nofv 27585 sltres 27590 noextendgt 27598 nolesgn2ores 27600 nosepnelem 27607 nosepdmlem 27611 nolt02o 27623 nogt01o 27624 nosupno 27631 nosupbnd1lem3 27638 nosupbnd1 27642 nosupbnd2lem1 27643 nosupbnd2 27644 ssoninhaus 36421 onint1 36422 1oequni2o 37341 finxpreclem4 37367 pw2f1ocnv 43010 frlmpwfi 43071 omnord1 43278 oege2 43280 oenord1 43289 oaomoencom 43290 oenassex 43291 oenass 43292 omabs2 43305 oaltom 43378 omltoe 43380 2no 43410 nlim3 43417 tr3dom 43501 enrelmap 43970 nelsubc3 49057 |
| Copyright terms: Public domain | W3C validator |