| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version | ||
| Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7668. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 2on | ⊢ 2o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8386 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8397 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2oex 8396 | . . . 4 ⊢ 2o ∈ V | |
| 4 | 1, 3 | eqeltrri 2828 | . . 3 ⊢ suc 1o ∈ V |
| 5 | sucexeloni 7742 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc 1o ∈ On |
| 7 | 1, 6 | eqeltri 2827 | 1 ⊢ 2o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 Oncon0 6306 suc csuc 6308 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-suc 6312 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: ord3 8400 3on 8401 ord2eln012 8412 o2p2e4 8456 oneo 8496 2onn 8557 nneob 8571 en3 9165 infxpenc 9909 infxpenc2 9913 mappwen 10003 pwdjuen 10073 ackbij1lem5 10114 sdom2en01 10193 fin1a2lem4 10294 fin1a2lem6 10296 xpsrnbas 17475 xpsadd 17478 xpsmul 17479 xpsvsca 17481 xpsle 17483 cat1 18004 xpsmnd 18685 xpsgrp 18972 efgval 19630 efgtf 19635 frgpcpbl 19672 frgp0 19673 frgpeccl 19674 frgpadd 19676 frgpmhm 19678 vrgpf 19681 vrgpinv 19682 frgpupf 19686 frgpup1 19688 frgpup2 19689 frgpup3lem 19690 frgpnabllem1 19786 frgpnabllem2 19787 xpsrngd 20098 xpsringd 20251 xpstopnlem1 23725 xpstps 23726 xpstopnlem2 23727 xpsxmetlem 24295 xpsdsval 24297 nofv 27597 sltres 27602 noextendgt 27610 nolesgn2ores 27612 nosepnelem 27619 nosepdmlem 27623 nolt02o 27635 nogt01o 27636 nosupno 27643 nosupbnd1lem3 27650 nosupbnd1 27654 nosupbnd2lem1 27655 nosupbnd2 27656 ssoninhaus 36488 onint1 36489 1oequni2o 37408 finxpreclem4 37434 pw2f1ocnv 43076 frlmpwfi 43137 omnord1 43344 oege2 43346 oenord1 43355 oaomoencom 43356 oenassex 43357 oenass 43358 omabs2 43371 oaltom 43444 omltoe 43446 2no 43476 nlim3 43483 tr3dom 43567 enrelmap 44036 nelsubc3 49109 |
| Copyright terms: Public domain | W3C validator |