| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version | ||
| Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7714. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 2on | ⊢ 2o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8438 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8449 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2oex 8448 | . . . 4 ⊢ 2o ∈ V | |
| 4 | 1, 3 | eqeltrri 2826 | . . 3 ⊢ suc 1o ∈ V |
| 5 | sucexeloni 7788 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc 1o ∈ On |
| 7 | 1, 6 | eqeltri 2825 | 1 ⊢ 2o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 Oncon0 6335 suc csuc 6337 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: ord3 8452 3on 8453 ord2eln012 8464 o2p2e4 8508 oneo 8548 2onn 8609 nneob 8623 en3 9234 infxpenc 9978 infxpenc2 9982 mappwen 10072 pwdjuen 10142 ackbij1lem5 10183 sdom2en01 10262 fin1a2lem4 10363 fin1a2lem6 10365 xpsrnbas 17541 xpsadd 17544 xpsmul 17545 xpsvsca 17547 xpsle 17549 cat1 18066 xpsmnd 18711 xpsgrp 18998 efgval 19654 efgtf 19659 frgpcpbl 19696 frgp0 19697 frgpeccl 19698 frgpadd 19700 frgpmhm 19702 vrgpf 19705 vrgpinv 19706 frgpupf 19710 frgpup1 19712 frgpup2 19713 frgpup3lem 19714 frgpnabllem1 19810 frgpnabllem2 19811 xpsrngd 20095 xpsringd 20248 xpstopnlem1 23703 xpstps 23704 xpstopnlem2 23705 xpsxmetlem 24274 xpsdsval 24276 nofv 27576 sltres 27581 noextendgt 27589 nolesgn2ores 27591 nosepnelem 27598 nosepdmlem 27602 nolt02o 27614 nogt01o 27615 nosupno 27622 nosupbnd1lem3 27629 nosupbnd1 27633 nosupbnd2lem1 27634 nosupbnd2 27635 ssoninhaus 36443 onint1 36444 1oequni2o 37363 finxpreclem4 37389 pw2f1ocnv 43033 frlmpwfi 43094 omnord1 43301 oege2 43303 oenord1 43312 oaomoencom 43313 oenassex 43314 oenass 43315 omabs2 43328 oaltom 43401 omltoe 43403 2no 43433 nlim3 43440 tr3dom 43524 enrelmap 43993 nelsubc3 49064 |
| Copyright terms: Public domain | W3C validator |