| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version | ||
| Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7674. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 2on | ⊢ 2o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8392 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8403 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2oex 8402 | . . . 4 ⊢ 2o ∈ V | |
| 4 | 1, 3 | eqeltrri 2830 | . . 3 ⊢ suc 1o ∈ V |
| 5 | sucexeloni 7748 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc 1o ∈ On |
| 7 | 1, 6 | eqeltri 2829 | 1 ⊢ 2o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 Oncon0 6311 suc csuc 6313 1oc1o 8384 2oc2o 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-suc 6317 df-1o 8391 df-2o 8392 |
| This theorem is referenced by: ord3 8406 3on 8407 ord2eln012 8418 o2p2e4 8462 oneo 8502 2onn 8563 nneob 8577 en3 9172 infxpenc 9916 infxpenc2 9920 mappwen 10010 pwdjuen 10080 ackbij1lem5 10121 sdom2en01 10200 fin1a2lem4 10301 fin1a2lem6 10303 xpsrnbas 17477 xpsadd 17480 xpsmul 17481 xpsvsca 17483 xpsle 17485 cat1 18006 xpsmnd 18687 xpsgrp 18974 efgval 19631 efgtf 19636 frgpcpbl 19673 frgp0 19674 frgpeccl 19675 frgpadd 19677 frgpmhm 19679 vrgpf 19682 vrgpinv 19683 frgpupf 19687 frgpup1 19689 frgpup2 19690 frgpup3lem 19691 frgpnabllem1 19787 frgpnabllem2 19788 xpsrngd 20099 xpsringd 20252 xpstopnlem1 23725 xpstps 23726 xpstopnlem2 23727 xpsxmetlem 24295 xpsdsval 24297 nofv 27597 sltres 27602 noextendgt 27610 nolesgn2ores 27612 nosepnelem 27619 nosepdmlem 27623 nolt02o 27635 nogt01o 27636 nosupno 27643 nosupbnd1lem3 27650 nosupbnd1 27654 nosupbnd2lem1 27655 nosupbnd2 27656 ssoninhaus 36513 onint1 36514 1oequni2o 37433 finxpreclem4 37459 pw2f1ocnv 43155 frlmpwfi 43216 omnord1 43423 oege2 43425 oenord1 43434 oaomoencom 43435 oenassex 43436 oenass 43437 omabs2 43450 oaltom 43523 omltoe 43525 2no 43555 nlim3 43562 tr3dom 43646 enrelmap 44115 nelsubc3 49197 |
| Copyright terms: Public domain | W3C validator |