| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version | ||
| Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7711. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 2on | ⊢ 2o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8435 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8446 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2oex 8445 | . . . 4 ⊢ 2o ∈ V | |
| 4 | 1, 3 | eqeltrri 2825 | . . 3 ⊢ suc 1o ∈ V |
| 5 | sucexeloni 7785 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc 1o ∈ On |
| 7 | 1, 6 | eqeltri 2824 | 1 ⊢ 2o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 Oncon0 6332 suc csuc 6334 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: ord3 8449 3on 8450 ord2eln012 8461 o2p2e4 8505 oneo 8545 2onn 8606 nneob 8620 en3 9227 infxpenc 9971 infxpenc2 9975 mappwen 10065 pwdjuen 10135 ackbij1lem5 10176 sdom2en01 10255 fin1a2lem4 10356 fin1a2lem6 10358 xpsrnbas 17534 xpsadd 17537 xpsmul 17538 xpsvsca 17540 xpsle 17542 cat1 18059 xpsmnd 18704 xpsgrp 18991 efgval 19647 efgtf 19652 frgpcpbl 19689 frgp0 19690 frgpeccl 19691 frgpadd 19693 frgpmhm 19695 vrgpf 19698 vrgpinv 19699 frgpupf 19703 frgpup1 19705 frgpup2 19706 frgpup3lem 19707 frgpnabllem1 19803 frgpnabllem2 19804 xpsrngd 20088 xpsringd 20241 xpstopnlem1 23696 xpstps 23697 xpstopnlem2 23698 xpsxmetlem 24267 xpsdsval 24269 nofv 27569 sltres 27574 noextendgt 27582 nolesgn2ores 27584 nosepnelem 27591 nosepdmlem 27595 nolt02o 27607 nogt01o 27608 nosupno 27615 nosupbnd1lem3 27622 nosupbnd1 27626 nosupbnd2lem1 27627 nosupbnd2 27628 ssoninhaus 36436 onint1 36437 1oequni2o 37356 finxpreclem4 37382 pw2f1ocnv 43026 frlmpwfi 43087 omnord1 43294 oege2 43296 oenord1 43305 oaomoencom 43306 oenassex 43307 oenass 43308 omabs2 43321 oaltom 43394 omltoe 43396 2no 43426 nlim3 43433 tr3dom 43517 enrelmap 43986 nelsubc3 49060 |
| Copyright terms: Public domain | W3C validator |