Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version |
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
2on | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8132 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 8138 | . . 3 ⊢ 1o ∈ On | |
3 | 2 | onsuci 7572 | . 2 ⊢ suc 1o ∈ On |
4 | 1, 3 | eqeltri 2829 | 1 ⊢ 2o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2114 Oncon0 6172 suc csuc 6174 1oc1o 8124 2oc2o 8125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-tr 5137 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-ord 6175 df-on 6176 df-suc 6178 df-1o 8131 df-2o 8132 |
This theorem is referenced by: 3on 8141 o2p2e4 8197 o2p2e4OLD 8198 oneo 8238 nneob 8310 infxpenc 9518 infxpenc2 9522 mappwen 9612 pwdjuen 9681 ackbij1lem5 9724 sdom2en01 9802 fin1a2lem4 9903 fin1a2lem6 9905 xpsrnbas 16947 xpsadd 16950 xpsmul 16951 xpsvsca 16953 xpsle 16955 cat1 17469 xpsmnd 18067 xpsgrp 18336 efgval 18961 efgtf 18966 frgpcpbl 19003 frgp0 19004 frgpeccl 19005 frgpadd 19007 frgpmhm 19009 vrgpf 19012 vrgpinv 19013 frgpupf 19017 frgpup1 19019 frgpup2 19020 frgpup3lem 19021 frgpnabllem1 19112 frgpnabllem2 19113 xpstopnlem1 22560 xpstps 22561 xpstopnlem2 22562 xpsxmetlem 23132 xpsdsval 23134 nofv 33501 sltres 33506 noextendgt 33514 nolesgn2ores 33516 nosepnelem 33523 nosepdmlem 33527 nolt02o 33539 nogt01o 33540 nosupno 33547 nosupbnd1lem3 33554 nosupbnd1 33558 nosupbnd2lem1 33559 nosupbnd2 33560 ssoninhaus 34275 onint1 34276 1oequni2o 35162 finxpreclem4 35188 pw2f1ocnv 40431 frlmpwfi 40495 tr3dom 40689 enrelmap 41151 |
Copyright terms: Public domain | W3C validator |