![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version |
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
2on | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 7844 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 7850 | . . 3 ⊢ 1o ∈ On | |
3 | 2 | onsuci 7316 | . 2 ⊢ suc 1o ∈ On |
4 | 1, 3 | eqeltri 2854 | 1 ⊢ 2o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Oncon0 5976 suc csuc 5978 1oc1o 7836 2oc2o 7837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-ord 5979 df-on 5980 df-suc 5982 df-1o 7843 df-2o 7844 |
This theorem is referenced by: 3on 7854 o2p2e4 7905 oneo 7945 nneob 8016 infxpenc 9174 infxpenc2 9178 mappwen 9268 pwcdaen 9342 ackbij1lem5 9381 sdom2en01 9459 fin1a2lem4 9560 fin1a2lem6 9562 xpslem 16619 xpsadd 16622 xpsmul 16623 xpsvsca 16625 xpsle 16627 xpsmnd 17716 xpsgrp 17921 efgval 18514 efgtf 18519 frgpcpbl 18558 frgp0 18559 frgpeccl 18560 frgpadd 18562 frgpmhm 18564 vrgpf 18567 vrgpinv 18568 frgpupf 18572 frgpup1 18574 frgpup2 18575 frgpup3lem 18576 frgpnabllem1 18662 frgpnabllem2 18663 xpstopnlem1 22021 xpstps 22022 xpstopnlem2 22023 xpsxmetlem 22592 xpsdsval 22594 nofv 32399 sltres 32404 noextendgt 32412 nolesgn2ores 32414 nosepnelem 32419 nosepdmlem 32422 nolt02o 32434 nosupno 32438 nosupbday 32440 nosupbnd1lem3 32445 nosupbnd1 32449 nosupbnd2lem1 32450 nosupbnd2 32451 ssoninhaus 33030 onint1 33031 1oequni2o 33811 finxpreclem4 33826 pw2f1ocnv 38545 frlmpwfi 38609 enrelmap 39229 clsk1indlem1 39281 clsk1independent 39282 |
Copyright terms: Public domain | W3C validator |