|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version | ||
| Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7756. (Revised by BTernaryTau, 30-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| 2on | ⊢ 2o ∈ On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-2o 8508 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8519 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2oex 8518 | . . . 4 ⊢ 2o ∈ V | |
| 4 | 1, 3 | eqeltrri 2837 | . . 3 ⊢ suc 1o ∈ V | 
| 5 | sucexeloni 7830 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc 1o ∈ On | 
| 7 | 1, 6 | eqeltri 2836 | 1 ⊢ 2o ∈ On | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2107 Vcvv 3479 Oncon0 6383 suc csuc 6385 1oc1o 8500 2oc2o 8501 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 df-suc 6389 df-1o 8507 df-2o 8508 | 
| This theorem is referenced by: ord3 8524 3on 8525 ord2eln012 8536 o2p2e4 8580 oneo 8620 2onn 8681 nneob 8695 en3 9317 infxpenc 10059 infxpenc2 10063 mappwen 10153 pwdjuen 10223 ackbij1lem5 10264 sdom2en01 10343 fin1a2lem4 10444 fin1a2lem6 10446 xpsrnbas 17617 xpsadd 17620 xpsmul 17621 xpsvsca 17623 xpsle 17625 cat1 18143 xpsmnd 18791 xpsgrp 19078 efgval 19736 efgtf 19741 frgpcpbl 19778 frgp0 19779 frgpeccl 19780 frgpadd 19782 frgpmhm 19784 vrgpf 19787 vrgpinv 19788 frgpupf 19792 frgpup1 19794 frgpup2 19795 frgpup3lem 19796 frgpnabllem1 19892 frgpnabllem2 19893 xpsrngd 20177 xpsringd 20330 xpstopnlem1 23818 xpstps 23819 xpstopnlem2 23820 xpsxmetlem 24390 xpsdsval 24392 nofv 27703 sltres 27708 noextendgt 27716 nolesgn2ores 27718 nosepnelem 27725 nosepdmlem 27729 nolt02o 27741 nogt01o 27742 nosupno 27749 nosupbnd1lem3 27756 nosupbnd1 27760 nosupbnd2lem1 27761 nosupbnd2 27762 ssoninhaus 36450 onint1 36451 1oequni2o 37370 finxpreclem4 37396 pw2f1ocnv 43054 frlmpwfi 43115 omnord1 43323 oege2 43325 oenord1 43334 oaomoencom 43335 oenassex 43336 oenass 43337 omabs2 43350 oaltom 43423 omltoe 43425 2no 43455 nlim3 43462 tr3dom 43546 enrelmap 44015 | 
| Copyright terms: Public domain | W3C validator |