![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version |
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7770. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
2on | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8523 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 8534 | . . 3 ⊢ 1o ∈ On | |
3 | 2oex 8533 | . . . 4 ⊢ 2o ∈ V | |
4 | 1, 3 | eqeltrri 2841 | . . 3 ⊢ suc 1o ∈ V |
5 | sucexeloni 7845 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
6 | 2, 4, 5 | mp2an 691 | . 2 ⊢ suc 1o ∈ On |
7 | 1, 6 | eqeltri 2840 | 1 ⊢ 2o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 Oncon0 6395 suc csuc 6397 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: ord3 8539 3on 8540 ord2eln012 8553 o2p2e4 8597 oneo 8637 2onn 8698 nneob 8712 en3 9344 infxpenc 10087 infxpenc2 10091 mappwen 10181 pwdjuen 10251 ackbij1lem5 10292 sdom2en01 10371 fin1a2lem4 10472 fin1a2lem6 10474 xpsrnbas 17631 xpsadd 17634 xpsmul 17635 xpsvsca 17637 xpsle 17639 cat1 18164 xpsmnd 18812 xpsgrp 19099 efgval 19759 efgtf 19764 frgpcpbl 19801 frgp0 19802 frgpeccl 19803 frgpadd 19805 frgpmhm 19807 vrgpf 19810 vrgpinv 19811 frgpupf 19815 frgpup1 19817 frgpup2 19818 frgpup3lem 19819 frgpnabllem1 19915 frgpnabllem2 19916 xpsrngd 20206 xpsringd 20355 xpstopnlem1 23838 xpstps 23839 xpstopnlem2 23840 xpsxmetlem 24410 xpsdsval 24412 nofv 27720 sltres 27725 noextendgt 27733 nolesgn2ores 27735 nosepnelem 27742 nosepdmlem 27746 nolt02o 27758 nogt01o 27759 nosupno 27766 nosupbnd1lem3 27773 nosupbnd1 27777 nosupbnd2lem1 27778 nosupbnd2 27779 ssoninhaus 36414 onint1 36415 1oequni2o 37334 finxpreclem4 37360 pw2f1ocnv 42994 frlmpwfi 43055 omnord1 43267 oege2 43269 oenord1 43278 oaomoencom 43279 oenassex 43280 oenass 43281 omabs2 43294 oaltom 43367 omltoe 43369 2no 43399 nlim3 43406 tr3dom 43490 enrelmap 43959 |
Copyright terms: Public domain | W3C validator |