Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version |
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7588. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
2on | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8298 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 8309 | . . 3 ⊢ 1o ∈ On | |
3 | 2oex 8308 | . . . 4 ⊢ 2o ∈ V | |
4 | 1, 3 | eqeltrri 2836 | . . 3 ⊢ suc 1o ∈ V |
5 | sucexeloni 7658 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
6 | 2, 4, 5 | mp2an 689 | . 2 ⊢ suc 1o ∈ On |
7 | 1, 6 | eqeltri 2835 | 1 ⊢ 2o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 Oncon0 6266 suc csuc 6268 1oc1o 8290 2oc2o 8291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 df-1o 8297 df-2o 8298 |
This theorem is referenced by: 3on 8314 ord2eln012 8327 o2p2e4 8371 o2p2e4OLD 8372 oneo 8412 2onn 8472 nneob 8486 infxpenc 9774 infxpenc2 9778 mappwen 9868 pwdjuen 9937 ackbij1lem5 9980 sdom2en01 10058 fin1a2lem4 10159 fin1a2lem6 10161 xpsrnbas 17282 xpsadd 17285 xpsmul 17286 xpsvsca 17288 xpsle 17290 cat1 17812 xpsmnd 18425 xpsgrp 18694 efgval 19323 efgtf 19328 frgpcpbl 19365 frgp0 19366 frgpeccl 19367 frgpadd 19369 frgpmhm 19371 vrgpf 19374 vrgpinv 19375 frgpupf 19379 frgpup1 19381 frgpup2 19382 frgpup3lem 19383 frgpnabllem1 19474 frgpnabllem2 19475 xpstopnlem1 22960 xpstps 22961 xpstopnlem2 22962 xpsxmetlem 23532 xpsdsval 23534 nofv 33860 sltres 33865 noextendgt 33873 nolesgn2ores 33875 nosepnelem 33882 nosepdmlem 33886 nolt02o 33898 nogt01o 33899 nosupno 33906 nosupbnd1lem3 33913 nosupbnd1 33917 nosupbnd2lem1 33918 nosupbnd2 33919 ssoninhaus 34637 onint1 34638 1oequni2o 35539 finxpreclem4 35565 pw2f1ocnv 40859 frlmpwfi 40923 nlim3 41051 tr3dom 41135 enrelmap 41605 |
Copyright terms: Public domain | W3C validator |