![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version |
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7722. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
2on | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8464 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 8475 | . . 3 ⊢ 1o ∈ On | |
3 | 2oex 8474 | . . . 4 ⊢ 2o ∈ V | |
4 | 1, 3 | eqeltrri 2831 | . . 3 ⊢ suc 1o ∈ V |
5 | sucexeloni 7794 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
6 | 2, 4, 5 | mp2an 691 | . 2 ⊢ suc 1o ∈ On |
7 | 1, 6 | eqeltri 2830 | 1 ⊢ 2o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 Oncon0 6362 suc csuc 6364 1oc1o 8456 2oc2o 8457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6365 df-on 6366 df-suc 6368 df-1o 8463 df-2o 8464 |
This theorem is referenced by: ord3 8480 3on 8481 ord2eln012 8494 o2p2e4 8538 oneo 8578 2onn 8638 nneob 8652 en3 9279 infxpenc 10010 infxpenc2 10014 mappwen 10104 pwdjuen 10173 ackbij1lem5 10216 sdom2en01 10294 fin1a2lem4 10395 fin1a2lem6 10397 xpsrnbas 17514 xpsadd 17517 xpsmul 17518 xpsvsca 17520 xpsle 17522 cat1 18044 xpsmnd 18662 xpsgrp 18939 efgval 19580 efgtf 19585 frgpcpbl 19622 frgp0 19623 frgpeccl 19624 frgpadd 19626 frgpmhm 19628 vrgpf 19631 vrgpinv 19632 frgpupf 19636 frgpup1 19638 frgpup2 19639 frgpup3lem 19640 frgpnabllem1 19736 frgpnabllem2 19737 xpsringd 20139 xpstopnlem1 23305 xpstps 23306 xpstopnlem2 23307 xpsxmetlem 23877 xpsdsval 23879 nofv 27150 sltres 27155 noextendgt 27163 nolesgn2ores 27165 nosepnelem 27172 nosepdmlem 27176 nolt02o 27188 nogt01o 27189 nosupno 27196 nosupbnd1lem3 27203 nosupbnd1 27207 nosupbnd2lem1 27208 nosupbnd2 27209 ssoninhaus 35322 onint1 35323 1oequni2o 36238 finxpreclem4 36264 pw2f1ocnv 41762 frlmpwfi 41826 omnord1 42041 oege2 42043 oenord1 42052 oaomoencom 42053 oenassex 42054 oenass 42055 omabs2 42068 oaltom 42142 omltoe 42144 2no 42174 nlim3 42181 tr3dom 42265 enrelmap 42734 xpsrngd 46667 |
Copyright terms: Public domain | W3C validator |