Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version |
Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
2on | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8268 | . 2 ⊢ 2o = suc 1o | |
2 | 1on 8274 | . . 3 ⊢ 1o ∈ On | |
3 | 2 | onsuci 7660 | . 2 ⊢ suc 1o ∈ On |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ 2o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Oncon0 6251 suc csuc 6253 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 df-1o 8267 df-2o 8268 |
This theorem is referenced by: 3on 8277 o2p2e4 8333 o2p2e4OLD 8334 oneo 8374 nneob 8446 infxpenc 9705 infxpenc2 9709 mappwen 9799 pwdjuen 9868 ackbij1lem5 9911 sdom2en01 9989 fin1a2lem4 10090 fin1a2lem6 10092 xpsrnbas 17199 xpsadd 17202 xpsmul 17203 xpsvsca 17205 xpsle 17207 cat1 17728 xpsmnd 18340 xpsgrp 18609 efgval 19238 efgtf 19243 frgpcpbl 19280 frgp0 19281 frgpeccl 19282 frgpadd 19284 frgpmhm 19286 vrgpf 19289 vrgpinv 19290 frgpupf 19294 frgpup1 19296 frgpup2 19297 frgpup3lem 19298 frgpnabllem1 19389 frgpnabllem2 19390 xpstopnlem1 22868 xpstps 22869 xpstopnlem2 22870 xpsxmetlem 23440 xpsdsval 23442 nofv 33787 sltres 33792 noextendgt 33800 nolesgn2ores 33802 nosepnelem 33809 nosepdmlem 33813 nolt02o 33825 nogt01o 33826 nosupno 33833 nosupbnd1lem3 33840 nosupbnd1 33844 nosupbnd2lem1 33845 nosupbnd2 33846 ssoninhaus 34564 onint1 34565 1oequni2o 35466 finxpreclem4 35492 pw2f1ocnv 40775 frlmpwfi 40839 tr3dom 41033 enrelmap 41494 |
Copyright terms: Public domain | W3C validator |