| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2on | Structured version Visualization version GIF version | ||
| Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7734. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 2on | ⊢ 2o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 8486 | . 2 ⊢ 2o = suc 1o | |
| 2 | 1on 8497 | . . 3 ⊢ 1o ∈ On | |
| 3 | 2oex 8496 | . . . 4 ⊢ 2o ∈ V | |
| 4 | 1, 3 | eqeltrri 2832 | . . 3 ⊢ suc 1o ∈ V |
| 5 | sucexeloni 7808 | . . 3 ⊢ ((1o ∈ On ∧ suc 1o ∈ V) → suc 1o ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc 1o ∈ On |
| 7 | 1, 6 | eqeltri 2831 | 1 ⊢ 2o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 Oncon0 6357 suc csuc 6359 1oc1o 8478 2oc2o 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 df-1o 8485 df-2o 8486 |
| This theorem is referenced by: ord3 8502 3on 8503 ord2eln012 8514 o2p2e4 8558 oneo 8598 2onn 8659 nneob 8673 en3 9293 infxpenc 10037 infxpenc2 10041 mappwen 10131 pwdjuen 10201 ackbij1lem5 10242 sdom2en01 10321 fin1a2lem4 10422 fin1a2lem6 10424 xpsrnbas 17590 xpsadd 17593 xpsmul 17594 xpsvsca 17596 xpsle 17598 cat1 18115 xpsmnd 18760 xpsgrp 19047 efgval 19703 efgtf 19708 frgpcpbl 19745 frgp0 19746 frgpeccl 19747 frgpadd 19749 frgpmhm 19751 vrgpf 19754 vrgpinv 19755 frgpupf 19759 frgpup1 19761 frgpup2 19762 frgpup3lem 19763 frgpnabllem1 19859 frgpnabllem2 19860 xpsrngd 20144 xpsringd 20297 xpstopnlem1 23752 xpstps 23753 xpstopnlem2 23754 xpsxmetlem 24323 xpsdsval 24325 nofv 27626 sltres 27631 noextendgt 27639 nolesgn2ores 27641 nosepnelem 27648 nosepdmlem 27652 nolt02o 27664 nogt01o 27665 nosupno 27672 nosupbnd1lem3 27679 nosupbnd1 27683 nosupbnd2lem1 27684 nosupbnd2 27685 ssoninhaus 36471 onint1 36472 1oequni2o 37391 finxpreclem4 37417 pw2f1ocnv 43028 frlmpwfi 43089 omnord1 43296 oege2 43298 oenord1 43307 oaomoencom 43308 oenassex 43309 oenass 43310 omabs2 43323 oaltom 43396 omltoe 43398 2no 43428 nlim3 43435 tr3dom 43519 enrelmap 43988 nelsubc3 49005 |
| Copyright terms: Public domain | W3C validator |