![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relmptopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑}) |
Ref | Expression |
---|---|
relmptopab | ⊢ Rel (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑}) | |
2 | 1 | fvmptss 6964 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) → (𝐹‘𝐵) ⊆ (V × V)) |
3 | relopab 5784 | . . . . 5 ⊢ Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} | |
4 | df-rel 5644 | . . . . 5 ⊢ (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)) | |
5 | 3, 4 | mpbi 229 | . . . 4 ⊢ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)) |
7 | 2, 6 | mprg 3067 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
8 | df-rel 5644 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ Rel (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3447 ⊆ wss 3914 {copab 5171 ↦ cmpt 5192 × cxp 5635 Rel wrel 5642 ‘cfv 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fv 6508 |
This theorem is referenced by: reldvdsr 20081 lmrel 22604 phtpcrel 24379 ulmrel 25760 ercgrg 27508 relwlk 28623 reltrls 28691 relpths 28717 releupth 29192 acycgr0v 33806 prclisacycgr 33809 |
Copyright terms: Public domain | W3C validator |