![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relmptopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑}) |
Ref | Expression |
---|---|
relmptopab | ⊢ Rel (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑}) | |
2 | 1 | fvmptss 7010 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) → (𝐹‘𝐵) ⊆ (V × V)) |
3 | relopab 5824 | . . . . 5 ⊢ Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} | |
4 | df-rel 5683 | . . . . 5 ⊢ (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)) | |
5 | 3, 4 | mpbi 229 | . . . 4 ⊢ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)) |
7 | 2, 6 | mprg 3067 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
8 | df-rel 5683 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ Rel (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 {copab 5210 ↦ cmpt 5231 × cxp 5674 Rel wrel 5681 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: reldvdsr 20173 lmrel 22733 phtpcrel 24508 ulmrel 25889 ercgrg 27765 relwlk 28880 reltrls 28948 relpths 28974 releupth 29449 acycgr0v 34134 prclisacycgr 34137 |
Copyright terms: Public domain | W3C validator |