Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relmptopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
relmptopab | ⊢ Rel (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | 1 | fvmptss 6887 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) → (𝐹‘𝐵) ⊆ (V × V)) |
3 | relopab 5734 | . . . . 5 ⊢ Rel {〈𝑦, 𝑧〉 ∣ 𝜑} | |
4 | df-rel 5596 | . . . . 5 ⊢ (Rel {〈𝑦, 𝑧〉 ∣ 𝜑} ↔ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
5 | 3, 4 | mpbi 229 | . . . 4 ⊢ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) |
7 | 2, 6 | mprg 3078 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
8 | df-rel 5596 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ Rel (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {copab 5136 ↦ cmpt 5157 × cxp 5587 Rel wrel 5594 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: reldvdsr 19886 lmrel 22381 phtpcrel 24156 ulmrel 25537 ercgrg 26878 relwlk 27993 reltrls 28062 relpths 28088 releupth 28563 acycgr0v 33110 prclisacycgr 33113 |
Copyright terms: Public domain | W3C validator |