MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmptopab Structured version   Visualization version   GIF version

Theorem relmptopab 7596
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
relmptopab.1 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
relmptopab Rel (𝐹𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem relmptopab
StepHypRef Expression
1 relmptopab.1 . . . 4 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21fvmptss 6941 . . 3 (∀𝑥𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) → (𝐹𝐵) ⊆ (V × V))
3 relopab 5764 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑}
4 df-rel 5623 . . . . 5 (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
53, 4mpbi 230 . . . 4 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
65a1i 11 . . 3 (𝑥𝐴 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
72, 6mprg 3053 . 2 (𝐹𝐵) ⊆ (V × V)
8 df-rel 5623 . 2 (Rel (𝐹𝐵) ↔ (𝐹𝐵) ⊆ (V × V))
97, 8mpbir 231 1 Rel (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  {copab 5153  cmpt 5172   × cxp 5614  Rel wrel 5621  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  reldvdsr  20276  lmrel  23143  phtpcrel  24917  ulmrel  26312  ercgrg  28493  relwlk  29602  reltrls  29669  relpths  29694  releupth  30174  acycgr0v  35180  prclisacycgr  35183
  Copyright terms: Public domain W3C validator