![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relmptopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
relmptopab | ⊢ Rel (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | 1 | fvmptss 6515 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) → (𝐹‘𝐵) ⊆ (V × V)) |
3 | relopab 5449 | . . . . 5 ⊢ Rel {〈𝑦, 𝑧〉 ∣ 𝜑} | |
4 | df-rel 5317 | . . . . 5 ⊢ (Rel {〈𝑦, 𝑧〉 ∣ 𝜑} ↔ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
5 | 3, 4 | mpbi 222 | . . . 4 ⊢ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) |
7 | 2, 6 | mprg 3105 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
8 | df-rel 5317 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 223 | 1 ⊢ Rel (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 Vcvv 3383 ⊆ wss 3767 {copab 4903 ↦ cmpt 4920 × cxp 5308 Rel wrel 5315 ‘cfv 6099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fv 6107 |
This theorem is referenced by: reldvdsr 18957 lmrel 21360 phtpcrel 23117 ulmrel 24470 ercgrg 25761 relwlk 26867 reltrls 26939 relpths 26966 releupth 27535 |
Copyright terms: Public domain | W3C validator |