MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmptopab Structured version   Visualization version   GIF version

Theorem relmptopab 7603
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
relmptopab.1 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
relmptopab Rel (𝐹𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem relmptopab
StepHypRef Expression
1 relmptopab.1 . . . 4 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21fvmptss 6946 . . 3 (∀𝑥𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) → (𝐹𝐵) ⊆ (V × V))
3 relopab 5771 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑}
4 df-rel 5630 . . . . 5 (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
53, 4mpbi 230 . . . 4 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
65a1i 11 . . 3 (𝑥𝐴 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
72, 6mprg 3050 . 2 (𝐹𝐵) ⊆ (V × V)
8 df-rel 5630 . 2 (Rel (𝐹𝐵) ↔ (𝐹𝐵) ⊆ (V × V))
97, 8mpbir 231 1 Rel (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  {copab 5157  cmpt 5176   × cxp 5621  Rel wrel 5628  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  reldvdsr  20263  lmrel  23133  phtpcrel  24908  ulmrel  26303  ercgrg  28480  relwlk  29589  reltrls  29656  relpths  29681  releupth  30161  acycgr0v  35120  prclisacycgr  35123
  Copyright terms: Public domain W3C validator