![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relmptopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
relmptopab | ⊢ Rel (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | 1 | fvmptss 7041 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) → (𝐹‘𝐵) ⊆ (V × V)) |
3 | relopab 5848 | . . . . 5 ⊢ Rel {〈𝑦, 𝑧〉 ∣ 𝜑} | |
4 | df-rel 5707 | . . . . 5 ⊢ (Rel {〈𝑦, 𝑧〉 ∣ 𝜑} ↔ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
5 | 3, 4 | mpbi 230 | . . . 4 ⊢ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) |
7 | 2, 6 | mprg 3073 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
8 | df-rel 5707 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 231 | 1 ⊢ Rel (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {copab 5228 ↦ cmpt 5249 × cxp 5698 Rel wrel 5705 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: reldvdsr 20386 lmrel 23259 phtpcrel 25044 ulmrel 26439 ercgrg 28543 relwlk 29662 reltrls 29730 relpths 29756 releupth 30231 acycgr0v 35116 prclisacycgr 35119 |
Copyright terms: Public domain | W3C validator |