| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relmptopab | Structured version Visualization version GIF version | ||
| Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| relmptopab | ⊢ Rel (𝐹‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relmptopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
| 2 | 1 | fvmptss 6980 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) → (𝐹‘𝐵) ⊆ (V × V)) |
| 3 | relopab 5787 | . . . . 5 ⊢ Rel {〈𝑦, 𝑧〉 ∣ 𝜑} | |
| 4 | df-rel 5645 | . . . . 5 ⊢ (Rel {〈𝑦, 𝑧〉 ∣ 𝜑} ↔ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) | |
| 5 | 3, 4 | mpbi 230 | . . . 4 ⊢ {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V) |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {〈𝑦, 𝑧〉 ∣ 𝜑} ⊆ (V × V)) |
| 7 | 2, 6 | mprg 3050 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
| 8 | df-rel 5645 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ Rel (𝐹‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {copab 5169 ↦ cmpt 5188 × cxp 5636 Rel wrel 5643 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: reldvdsr 20269 lmrel 23117 phtpcrel 24892 ulmrel 26287 ercgrg 28444 relwlk 29554 reltrls 29622 relpths 29648 releupth 30128 acycgr0v 35135 prclisacycgr 35138 |
| Copyright terms: Public domain | W3C validator |