![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relmptopab | Structured version Visualization version GIF version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
relmptopab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑}) |
Ref | Expression |
---|---|
relmptopab | ⊢ Rel (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑}) | |
2 | 1 | fvmptss 7003 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) → (𝐹‘𝐵) ⊆ (V × V)) |
3 | relopab 5817 | . . . . 5 ⊢ Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} | |
4 | df-rel 5676 | . . . . 5 ⊢ (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)) | |
5 | 3, 4 | mpbi 229 | . . . 4 ⊢ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)) |
7 | 2, 6 | mprg 3061 | . 2 ⊢ (𝐹‘𝐵) ⊆ (V × V) |
8 | df-rel 5676 | . 2 ⊢ (Rel (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (V × V)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ Rel (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 {copab 5203 ↦ cmpt 5224 × cxp 5667 Rel wrel 5674 ‘cfv 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fv 6544 |
This theorem is referenced by: reldvdsr 20260 lmrel 23085 phtpcrel 24870 ulmrel 26265 ercgrg 28272 relwlk 29388 reltrls 29456 relpths 29482 releupth 29957 acycgr0v 34667 prclisacycgr 34670 |
Copyright terms: Public domain | W3C validator |