MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmptopab Structured version   Visualization version   GIF version

Theorem relmptopab 7115
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
relmptopab.1 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
relmptopab Rel (𝐹𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem relmptopab
StepHypRef Expression
1 relmptopab.1 . . . 4 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21fvmptss 6515 . . 3 (∀𝑥𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) → (𝐹𝐵) ⊆ (V × V))
3 relopab 5449 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑}
4 df-rel 5317 . . . . 5 (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
53, 4mpbi 222 . . . 4 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
65a1i 11 . . 3 (𝑥𝐴 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
72, 6mprg 3105 . 2 (𝐹𝐵) ⊆ (V × V)
8 df-rel 5317 . 2 (Rel (𝐹𝐵) ↔ (𝐹𝐵) ⊆ (V × V))
97, 8mpbir 223 1 Rel (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  Vcvv 3383  wss 3767  {copab 4903  cmpt 4920   × cxp 5308  Rel wrel 5315  cfv 6099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fv 6107
This theorem is referenced by:  reldvdsr  18957  lmrel  21360  phtpcrel  23117  ulmrel  24470  ercgrg  25761  relwlk  26867  reltrls  26939  relpths  26966  releupth  27535
  Copyright terms: Public domain W3C validator