MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmptopab Structured version   Visualization version   GIF version

Theorem relmptopab 7497
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
relmptopab.1 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
relmptopab Rel (𝐹𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem relmptopab
StepHypRef Expression
1 relmptopab.1 . . . 4 𝐹 = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21fvmptss 6869 . . 3 (∀𝑥𝐴 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) → (𝐹𝐵) ⊆ (V × V))
3 relopab 5723 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑}
4 df-rel 5587 . . . . 5 (Rel {⟨𝑦, 𝑧⟩ ∣ 𝜑} ↔ {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
53, 4mpbi 229 . . . 4 {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
65a1i 11 . . 3 (𝑥𝐴 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
72, 6mprg 3077 . 2 (𝐹𝐵) ⊆ (V × V)
8 df-rel 5587 . 2 (Rel (𝐹𝐵) ↔ (𝐹𝐵) ⊆ (V × V))
97, 8mpbir 230 1 Rel (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {copab 5132  cmpt 5153   × cxp 5578  Rel wrel 5585  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  reldvdsr  19801  lmrel  22289  phtpcrel  24062  ulmrel  25442  ercgrg  26782  relwlk  27895  reltrls  27964  relpths  27989  releupth  28464  acycgr0v  33010  prclisacycgr  33013
  Copyright terms: Public domain W3C validator