| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | rexbidva 3155 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | rexbidva 3155 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: 2reu4lem 4481 wrdl3s3 14904 bezoutlem2 16486 bezoutlem4 16488 vdwmc2 16926 lsmcom2 19561 lsmass 19575 lsmcomx 19762 lsmspsn 20967 hausdiag 23508 imasf1oxms 24353 mulsval 27988 mulscom 28018 addsdi 28034 mulsasslem3 28044 mulsunif2lem 28048 zs12ge0 28318 istrkg2ld 28363 iscgra 28712 axeuclid 28866 elwwlks2 29869 elwspths2spth 29870 fusgr2wsp2nb 30236 shscom 31221 lsmssass 33346 sategoelfvb 35379 3dim0 39424 islpln5 39502 islvol5 39546 isline2 39741 isline3 39743 paddcom 39780 cdlemg2cex 40558 prprspr2 47492 pgrpgt2nabl 48327 elbigolo1 48519 |
| Copyright terms: Public domain | W3C validator |