| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| 2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | rexbidva 3156 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | rexbidva 3156 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: 2reu4lem 4488 wrdl3s3 14935 bezoutlem2 16517 bezoutlem4 16519 vdwmc2 16957 lsmcom2 19592 lsmass 19606 lsmcomx 19793 lsmspsn 20998 hausdiag 23539 imasf1oxms 24384 mulsval 28019 mulscom 28049 addsdi 28065 mulsasslem3 28075 mulsunif2lem 28079 zs12ge0 28349 istrkg2ld 28394 iscgra 28743 axeuclid 28897 elwwlks2 29903 elwspths2spth 29904 fusgr2wsp2nb 30270 shscom 31255 lsmssass 33380 sategoelfvb 35413 3dim0 39458 islpln5 39536 islvol5 39580 isline2 39775 isline3 39777 paddcom 39814 cdlemg2cex 40592 prprspr2 47523 pgrpgt2nabl 48358 elbigolo1 48550 |
| Copyright terms: Public domain | W3C validator |