MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbidva Structured version   Visualization version   GIF version

Theorem 2rexbidva 3192
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2rexbidva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2rexbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32rexbidva 3151 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 ↔ ∃𝑦𝐵 𝜒))
43rexbidva 3151 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  2reu4lem  4473  wrdl3s3  14869  bezoutlem2  16451  bezoutlem4  16453  vdwmc2  16891  lsmcom2  19534  lsmass  19548  lsmcomx  19735  lsmspsn  20988  hausdiag  23530  imasf1oxms  24375  mulsval  28017  mulscom  28047  addsdi  28063  mulsasslem3  28073  mulsunif2lem  28077  zs12ge0  28360  istrkg2ld  28405  iscgra  28754  axeuclid  28908  elwwlks2  29911  elwspths2spth  29912  fusgr2wsp2nb  30278  shscom  31263  lsmssass  33339  sategoelfvb  35392  3dim0  39436  islpln5  39514  islvol5  39558  isline2  39753  isline3  39755  paddcom  39792  cdlemg2cex  40570  prprspr2  47502  pgrpgt2nabl  48350  elbigolo1  48542
  Copyright terms: Public domain W3C validator