MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbidva Structured version   Visualization version   GIF version

Theorem 2rexbidva 3195
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2rexbidva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2rexbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32rexbidva 3154 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 ↔ ∃𝑦𝐵 𝜒))
43rexbidva 3154 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3057
This theorem is referenced by:  2reu4lem  4469  wrdl3s3  14869  bezoutlem2  16451  bezoutlem4  16453  vdwmc2  16891  lsmcom2  19567  lsmass  19581  lsmcomx  19768  lsmspsn  21018  hausdiag  23560  imasf1oxms  24404  mulsval  28048  mulscom  28078  addsdi  28094  mulsasslem3  28104  mulsunif2lem  28108  zs12ge0  28393  istrkg2ld  28438  iscgra  28787  axeuclid  28941  elwwlks2  29947  elwspths2spth  29948  fusgr2wsp2nb  30314  shscom  31299  lsmssass  33367  sategoelfvb  35463  3dim0  39504  islpln5  39582  islvol5  39626  isline2  39821  isline3  39823  paddcom  39860  cdlemg2cex  40638  prprspr2  47557  pgrpgt2nabl  48405  elbigolo1  48597
  Copyright terms: Public domain W3C validator