MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbidva Structured version   Visualization version   GIF version

Theorem 2rexbidva 3198
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2rexbidva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2rexbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32rexbidva 3155 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 ↔ ∃𝑦𝐵 𝜒))
43rexbidva 3155 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  2reu4lem  4481  wrdl3s3  14904  bezoutlem2  16486  bezoutlem4  16488  vdwmc2  16926  lsmcom2  19569  lsmass  19583  lsmcomx  19770  lsmspsn  21023  hausdiag  23565  imasf1oxms  24410  mulsval  28052  mulscom  28082  addsdi  28098  mulsasslem3  28108  mulsunif2lem  28112  zs12ge0  28395  istrkg2ld  28440  iscgra  28789  axeuclid  28943  elwwlks2  29946  elwspths2spth  29947  fusgr2wsp2nb  30313  shscom  31298  lsmssass  33366  sategoelfvb  35399  3dim0  39444  islpln5  39522  islvol5  39566  isline2  39761  isline3  39763  paddcom  39800  cdlemg2cex  40578  prprspr2  47512  pgrpgt2nabl  48347  elbigolo1  48539
  Copyright terms: Public domain W3C validator