MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbidva Structured version   Visualization version   GIF version

Theorem 2rexbidva 3204
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2rexbidva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2rexbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32rexbidva 3162 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 ↔ ∃𝑦𝐵 𝜒))
43rexbidva 3162 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3061
This theorem is referenced by:  2reu4lem  4497  wrdl3s3  14981  bezoutlem2  16559  bezoutlem4  16561  vdwmc2  16999  lsmcom2  19636  lsmass  19650  lsmcomx  19837  lsmspsn  21042  hausdiag  23583  imasf1oxms  24428  mulsval  28064  mulscom  28094  addsdi  28110  mulsasslem3  28120  mulsunif2lem  28124  zs12ge0  28394  istrkg2ld  28439  iscgra  28788  axeuclid  28942  elwwlks2  29948  elwspths2spth  29949  fusgr2wsp2nb  30315  shscom  31300  lsmssass  33417  sategoelfvb  35441  3dim0  39476  islpln5  39554  islvol5  39598  isline2  39793  isline3  39795  paddcom  39832  cdlemg2cex  40610  prprspr2  47532  pgrpgt2nabl  48341  elbigolo1  48537
  Copyright terms: Public domain W3C validator