MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbidva Structured version   Visualization version   GIF version

Theorem 2rexbidva 3200
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2rexbidva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2rexbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32rexbidva 3155 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 ↔ ∃𝑦𝐵 𝜒))
43rexbidva 3155 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  2reu4lem  4485  wrdl3s3  14928  bezoutlem2  16510  bezoutlem4  16512  vdwmc2  16950  lsmcom2  19585  lsmass  19599  lsmcomx  19786  lsmspsn  20991  hausdiag  23532  imasf1oxms  24377  mulsval  28012  mulscom  28042  addsdi  28058  mulsasslem3  28068  mulsunif2lem  28072  zs12ge0  28342  istrkg2ld  28387  iscgra  28736  axeuclid  28890  elwwlks2  29896  elwspths2spth  29897  fusgr2wsp2nb  30263  shscom  31248  lsmssass  33373  sategoelfvb  35406  3dim0  39451  islpln5  39529  islvol5  39573  isline2  39768  isline3  39770  paddcom  39807  cdlemg2cex  40585  prprspr2  47519  pgrpgt2nabl  48354  elbigolo1  48546
  Copyright terms: Public domain W3C validator