Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2rexbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
2rexbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | rexbidva 3224 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | rexbidva 3224 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: 2reu4lem 4453 wrdl3s3 14605 bezoutlem2 16176 bezoutlem4 16178 vdwmc2 16608 lsmcom2 19175 lsmass 19190 lsmcomx 19372 lsmspsn 20261 hausdiag 22704 imasf1oxms 23551 istrkg2ld 26725 iscgra 27074 axeuclid 27234 elwwlks2 28232 elwspths2spth 28233 fusgr2wsp2nb 28599 shscom 29582 lsmssass 31492 sategoelfvb 33281 3dim0 37398 islpln5 37476 islvol5 37520 isline2 37715 isline3 37717 paddcom 37754 cdlemg2cex 38532 prprspr2 44858 pgrpgt2nabl 45590 elbigolo1 45791 |
Copyright terms: Public domain | W3C validator |