![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | rexbidva 3183 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | rexbidva 3183 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: 2reu4lem 4545 wrdl3s3 15011 bezoutlem2 16587 bezoutlem4 16589 vdwmc2 17026 lsmcom2 19697 lsmass 19711 lsmcomx 19898 lsmspsn 21106 hausdiag 23674 imasf1oxms 24523 mulsval 28153 mulscom 28183 addsdi 28199 mulsasslem3 28209 mulsunif2lem 28213 istrkg2ld 28486 iscgra 28835 axeuclid 28996 elwwlks2 29999 elwspths2spth 30000 fusgr2wsp2nb 30366 shscom 31351 lsmssass 33395 sategoelfvb 35387 3dim0 39414 islpln5 39492 islvol5 39536 isline2 39731 isline3 39733 paddcom 39770 cdlemg2cex 40548 prprspr2 47392 pgrpgt2nabl 48091 elbigolo1 48291 |
Copyright terms: Public domain | W3C validator |