MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbidva Structured version   Visualization version   GIF version

Theorem 2rexbidva 3198
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004.)
Hypothesis
Ref Expression
2ralbidva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2rexbidva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑦,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2rexbidva
StepHypRef Expression
1 2ralbidva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32rexbidva 3155 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 ↔ ∃𝑦𝐵 𝜒))
43rexbidva 3155 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  2reu4lem  4481  wrdl3s3  14904  bezoutlem2  16486  bezoutlem4  16488  vdwmc2  16926  lsmcom2  19561  lsmass  19575  lsmcomx  19762  lsmspsn  20967  hausdiag  23508  imasf1oxms  24353  mulsval  27988  mulscom  28018  addsdi  28034  mulsasslem3  28044  mulsunif2lem  28048  zs12ge0  28318  istrkg2ld  28363  iscgra  28712  axeuclid  28866  elwwlks2  29869  elwspths2spth  29870  fusgr2wsp2nb  30236  shscom  31221  lsmssass  33346  sategoelfvb  35379  3dim0  39424  islpln5  39502  islvol5  39546  isline2  39741  isline3  39743  paddcom  39780  cdlemg2cex  40558  prprspr2  47492  pgrpgt2nabl  48327  elbigolo1  48519
  Copyright terms: Public domain W3C validator