Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmssass Structured version   Visualization version   GIF version

Theorem lsmssass 31492
Description: Group sum is associative, subset version (see lsmass 19190). (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
lsmssass.p = (LSSum‘𝐺)
lsmssass.b 𝐵 = (Base‘𝐺)
lsmssass.g (𝜑𝐺 ∈ Mnd)
lsmssass.r (𝜑𝑅𝐵)
lsmssass.t (𝜑𝑇𝐵)
lsmssass.u (𝜑𝑈𝐵)
Assertion
Ref Expression
lsmssass (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))

Proof of Theorem lsmssass
Dummy variables 𝑎 𝑐 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmssass.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 lsmssass.r . . . . . . 7 (𝜑𝑅𝐵)
3 lsmssass.t . . . . . . 7 (𝜑𝑇𝐵)
4 lsmssass.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 lsmssass.p . . . . . . . 8 = (LSSum‘𝐺)
74, 5, 6lsmvalx 19159 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
81, 2, 3, 7syl3anc 1369 . . . . . 6 (𝜑 → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
98rexeqdv 3340 . . . . 5 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
10 ovex 7288 . . . . . . 7 (𝑎(+g𝐺)𝑏) ∈ V
1110rgen2w 3076 . . . . . 6 𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V
12 eqid 2738 . . . . . . 7 (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)) = (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))
13 oveq1 7262 . . . . . . . . 9 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑦(+g𝐺)𝑐) = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
1413eqeq2d 2749 . . . . . . . 8 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑥 = (𝑦(+g𝐺)𝑐) ↔ 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1514rexbidv 3225 . . . . . . 7 (𝑦 = (𝑎(+g𝐺)𝑏) → (∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1612, 15rexrnmpo 7391 . . . . . 6 (∀𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V → (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1711, 16ax-mp 5 . . . . 5 (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
189, 17bitrdi 286 . . . 4 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
19 lsmssass.u . . . . . . . . . 10 (𝜑𝑈𝐵)
204, 5, 6lsmvalx 19159 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
211, 3, 19, 20syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
2221rexeqdv 3340 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧)))
23 ovex 7288 . . . . . . . . . 10 (𝑏(+g𝐺)𝑐) ∈ V
2423rgen2w 3076 . . . . . . . . 9 𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V
25 eqid 2738 . . . . . . . . . 10 (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)) = (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))
26 oveq2 7263 . . . . . . . . . . 11 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑎(+g𝐺)𝑧) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
2726eqeq2d 2749 . . . . . . . . . 10 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑥 = (𝑎(+g𝐺)𝑧) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2825, 27rexrnmpo 7391 . . . . . . . . 9 (∀𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V → (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2924, 28ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
3022, 29bitrdi 286 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
3130adantr 480 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
321ad2antrr 722 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝐺 ∈ Mnd)
332ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑅𝐵)
34 simplr 765 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝑅)
3533, 34sseldd 3918 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝐵)
363ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑇𝐵)
37 simprl 767 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝑇)
3836, 37sseldd 3918 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝐵)
3919ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑈𝐵)
40 simprr 769 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝑈)
4139, 40sseldd 3918 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝐵)
424, 5mndass 18309 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4332, 35, 38, 41, 42syl13anc 1370 . . . . . . . 8 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4443eqeq2d 2749 . . . . . . 7 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → (𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
45442rexbidva 3227 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
4631, 45bitr4d 281 . . . . 5 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4746rexbidva 3224 . . . 4 (𝜑 → (∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4818, 47bitr4d 281 . . 3 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
494, 6lsmssv 19163 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) ⊆ 𝐵)
501, 2, 3, 49syl3anc 1369 . . . 4 (𝜑 → (𝑅 𝑇) ⊆ 𝐵)
514, 5, 6lsmelvalx 19160 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑅 𝑇) ⊆ 𝐵𝑈𝐵) → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
521, 50, 19, 51syl3anc 1369 . . 3 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
534, 6lsmssv 19163 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)
541, 3, 19, 53syl3anc 1369 . . . 4 (𝜑 → (𝑇 𝑈) ⊆ 𝐵)
554, 5, 6lsmelvalx 19160 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑅𝐵 ∧ (𝑇 𝑈) ⊆ 𝐵) → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
561, 2, 54, 55syl3anc 1369 . . 3 (𝜑 → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
5748, 52, 563bitr4d 310 . 2 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ 𝑥 ∈ (𝑅 (𝑇 𝑈))))
5857eqrdv 2736 1 (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  +gcplusg 16888  Mndcmnd 18300  LSSumclsm 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-lsm 19156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator