Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmssass Structured version   Visualization version   GIF version

Theorem lsmssass 33430
Description: Group sum is associative, subset version (see lsmass 19687). (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
lsmssass.p = (LSSum‘𝐺)
lsmssass.b 𝐵 = (Base‘𝐺)
lsmssass.g (𝜑𝐺 ∈ Mnd)
lsmssass.r (𝜑𝑅𝐵)
lsmssass.t (𝜑𝑇𝐵)
lsmssass.u (𝜑𝑈𝐵)
Assertion
Ref Expression
lsmssass (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))

Proof of Theorem lsmssass
Dummy variables 𝑎 𝑐 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmssass.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 lsmssass.r . . . . . . 7 (𝜑𝑅𝐵)
3 lsmssass.t . . . . . . 7 (𝜑𝑇𝐵)
4 lsmssass.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2737 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 lsmssass.p . . . . . . . 8 = (LSSum‘𝐺)
74, 5, 6lsmvalx 19657 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
81, 2, 3, 7syl3anc 1373 . . . . . 6 (𝜑 → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
98rexeqdv 3327 . . . . 5 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
10 ovex 7464 . . . . . . 7 (𝑎(+g𝐺)𝑏) ∈ V
1110rgen2w 3066 . . . . . 6 𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V
12 eqid 2737 . . . . . . 7 (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)) = (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))
13 oveq1 7438 . . . . . . . . 9 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑦(+g𝐺)𝑐) = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
1413eqeq2d 2748 . . . . . . . 8 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑥 = (𝑦(+g𝐺)𝑐) ↔ 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1514rexbidv 3179 . . . . . . 7 (𝑦 = (𝑎(+g𝐺)𝑏) → (∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1612, 15rexrnmpo 7573 . . . . . 6 (∀𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V → (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1711, 16ax-mp 5 . . . . 5 (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
189, 17bitrdi 287 . . . 4 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
19 lsmssass.u . . . . . . . . . 10 (𝜑𝑈𝐵)
204, 5, 6lsmvalx 19657 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
211, 3, 19, 20syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
2221rexeqdv 3327 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧)))
23 ovex 7464 . . . . . . . . . 10 (𝑏(+g𝐺)𝑐) ∈ V
2423rgen2w 3066 . . . . . . . . 9 𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V
25 eqid 2737 . . . . . . . . . 10 (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)) = (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))
26 oveq2 7439 . . . . . . . . . . 11 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑎(+g𝐺)𝑧) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
2726eqeq2d 2748 . . . . . . . . . 10 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑥 = (𝑎(+g𝐺)𝑧) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2825, 27rexrnmpo 7573 . . . . . . . . 9 (∀𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V → (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2924, 28ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
3022, 29bitrdi 287 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
3130adantr 480 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
321ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝐺 ∈ Mnd)
332ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑅𝐵)
34 simplr 769 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝑅)
3533, 34sseldd 3984 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝐵)
363ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑇𝐵)
37 simprl 771 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝑇)
3836, 37sseldd 3984 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝐵)
3919ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑈𝐵)
40 simprr 773 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝑈)
4139, 40sseldd 3984 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝐵)
424, 5mndass 18756 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4332, 35, 38, 41, 42syl13anc 1374 . . . . . . . 8 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4443eqeq2d 2748 . . . . . . 7 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → (𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
45442rexbidva 3220 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
4631, 45bitr4d 282 . . . . 5 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4746rexbidva 3177 . . . 4 (𝜑 → (∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4818, 47bitr4d 282 . . 3 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
494, 6lsmssv 19661 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) ⊆ 𝐵)
501, 2, 3, 49syl3anc 1373 . . . 4 (𝜑 → (𝑅 𝑇) ⊆ 𝐵)
514, 5, 6lsmelvalx 19658 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑅 𝑇) ⊆ 𝐵𝑈𝐵) → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
521, 50, 19, 51syl3anc 1373 . . 3 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
534, 6lsmssv 19661 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)
541, 3, 19, 53syl3anc 1373 . . . 4 (𝜑 → (𝑇 𝑈) ⊆ 𝐵)
554, 5, 6lsmelvalx 19658 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑅𝐵 ∧ (𝑇 𝑈) ⊆ 𝐵) → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
561, 2, 54, 55syl3anc 1373 . . 3 (𝜑 → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
5748, 52, 563bitr4d 311 . 2 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ 𝑥 ∈ (𝑅 (𝑇 𝑈))))
5857eqrdv 2735 1 (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  +gcplusg 17297  Mndcmnd 18747  LSSumclsm 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-lsm 19654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator