Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmssass Structured version   Visualization version   GIF version

Theorem lsmssass 33340
Description: Group sum is associative, subset version (see lsmass 19548). (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
lsmssass.p = (LSSum‘𝐺)
lsmssass.b 𝐵 = (Base‘𝐺)
lsmssass.g (𝜑𝐺 ∈ Mnd)
lsmssass.r (𝜑𝑅𝐵)
lsmssass.t (𝜑𝑇𝐵)
lsmssass.u (𝜑𝑈𝐵)
Assertion
Ref Expression
lsmssass (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))

Proof of Theorem lsmssass
Dummy variables 𝑎 𝑐 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmssass.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 lsmssass.r . . . . . . 7 (𝜑𝑅𝐵)
3 lsmssass.t . . . . . . 7 (𝜑𝑇𝐵)
4 lsmssass.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2729 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 lsmssass.p . . . . . . . 8 = (LSSum‘𝐺)
74, 5, 6lsmvalx 19518 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
81, 2, 3, 7syl3anc 1373 . . . . . 6 (𝜑 → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
98rexeqdv 3290 . . . . 5 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
10 ovex 7382 . . . . . . 7 (𝑎(+g𝐺)𝑏) ∈ V
1110rgen2w 3049 . . . . . 6 𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V
12 eqid 2729 . . . . . . 7 (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)) = (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))
13 oveq1 7356 . . . . . . . . 9 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑦(+g𝐺)𝑐) = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
1413eqeq2d 2740 . . . . . . . 8 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑥 = (𝑦(+g𝐺)𝑐) ↔ 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1514rexbidv 3153 . . . . . . 7 (𝑦 = (𝑎(+g𝐺)𝑏) → (∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1612, 15rexrnmpo 7489 . . . . . 6 (∀𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V → (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1711, 16ax-mp 5 . . . . 5 (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
189, 17bitrdi 287 . . . 4 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
19 lsmssass.u . . . . . . . . . 10 (𝜑𝑈𝐵)
204, 5, 6lsmvalx 19518 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
211, 3, 19, 20syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
2221rexeqdv 3290 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧)))
23 ovex 7382 . . . . . . . . . 10 (𝑏(+g𝐺)𝑐) ∈ V
2423rgen2w 3049 . . . . . . . . 9 𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V
25 eqid 2729 . . . . . . . . . 10 (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)) = (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))
26 oveq2 7357 . . . . . . . . . . 11 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑎(+g𝐺)𝑧) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
2726eqeq2d 2740 . . . . . . . . . 10 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑥 = (𝑎(+g𝐺)𝑧) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2825, 27rexrnmpo 7489 . . . . . . . . 9 (∀𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V → (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2924, 28ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
3022, 29bitrdi 287 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
3130adantr 480 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
321ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝐺 ∈ Mnd)
332ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑅𝐵)
34 simplr 768 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝑅)
3533, 34sseldd 3936 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝐵)
363ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑇𝐵)
37 simprl 770 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝑇)
3836, 37sseldd 3936 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝐵)
3919ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑈𝐵)
40 simprr 772 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝑈)
4139, 40sseldd 3936 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝐵)
424, 5mndass 18617 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4332, 35, 38, 41, 42syl13anc 1374 . . . . . . . 8 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4443eqeq2d 2740 . . . . . . 7 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → (𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
45442rexbidva 3192 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
4631, 45bitr4d 282 . . . . 5 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4746rexbidva 3151 . . . 4 (𝜑 → (∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4818, 47bitr4d 282 . . 3 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
494, 6lsmssv 19522 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) ⊆ 𝐵)
501, 2, 3, 49syl3anc 1373 . . . 4 (𝜑 → (𝑅 𝑇) ⊆ 𝐵)
514, 5, 6lsmelvalx 19519 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑅 𝑇) ⊆ 𝐵𝑈𝐵) → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
521, 50, 19, 51syl3anc 1373 . . 3 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
534, 6lsmssv 19522 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)
541, 3, 19, 53syl3anc 1373 . . . 4 (𝜑 → (𝑇 𝑈) ⊆ 𝐵)
554, 5, 6lsmelvalx 19519 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑅𝐵 ∧ (𝑇 𝑈) ⊆ 𝐵) → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
561, 2, 54, 55syl3anc 1373 . . 3 (𝜑 → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
5748, 52, 563bitr4d 311 . 2 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ 𝑥 ∈ (𝑅 (𝑇 𝑈))))
5857eqrdv 2727 1 (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903  ran crn 5620  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  +gcplusg 17161  Mndcmnd 18608  LSSumclsm 19513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-lsm 19515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator