Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmssass Structured version   Visualization version   GIF version

Theorem lsmssass 33144
Description: Group sum is associative, subset version (see lsmass 19638). (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
lsmssass.p = (LSSum‘𝐺)
lsmssass.b 𝐵 = (Base‘𝐺)
lsmssass.g (𝜑𝐺 ∈ Mnd)
lsmssass.r (𝜑𝑅𝐵)
lsmssass.t (𝜑𝑇𝐵)
lsmssass.u (𝜑𝑈𝐵)
Assertion
Ref Expression
lsmssass (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))

Proof of Theorem lsmssass
Dummy variables 𝑎 𝑐 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmssass.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 lsmssass.r . . . . . . 7 (𝜑𝑅𝐵)
3 lsmssass.t . . . . . . 7 (𝜑𝑇𝐵)
4 lsmssass.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2728 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 lsmssass.p . . . . . . . 8 = (LSSum‘𝐺)
74, 5, 6lsmvalx 19608 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
81, 2, 3, 7syl3anc 1368 . . . . . 6 (𝜑 → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
98rexeqdv 3324 . . . . 5 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
10 ovex 7459 . . . . . . 7 (𝑎(+g𝐺)𝑏) ∈ V
1110rgen2w 3063 . . . . . 6 𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V
12 eqid 2728 . . . . . . 7 (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)) = (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))
13 oveq1 7433 . . . . . . . . 9 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑦(+g𝐺)𝑐) = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
1413eqeq2d 2739 . . . . . . . 8 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑥 = (𝑦(+g𝐺)𝑐) ↔ 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1514rexbidv 3176 . . . . . . 7 (𝑦 = (𝑎(+g𝐺)𝑏) → (∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1612, 15rexrnmpo 7568 . . . . . 6 (∀𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V → (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1711, 16ax-mp 5 . . . . 5 (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
189, 17bitrdi 286 . . . 4 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
19 lsmssass.u . . . . . . . . . 10 (𝜑𝑈𝐵)
204, 5, 6lsmvalx 19608 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
211, 3, 19, 20syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
2221rexeqdv 3324 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧)))
23 ovex 7459 . . . . . . . . . 10 (𝑏(+g𝐺)𝑐) ∈ V
2423rgen2w 3063 . . . . . . . . 9 𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V
25 eqid 2728 . . . . . . . . . 10 (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)) = (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))
26 oveq2 7434 . . . . . . . . . . 11 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑎(+g𝐺)𝑧) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
2726eqeq2d 2739 . . . . . . . . . 10 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑥 = (𝑎(+g𝐺)𝑧) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2825, 27rexrnmpo 7568 . . . . . . . . 9 (∀𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V → (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2924, 28ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
3022, 29bitrdi 286 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
3130adantr 479 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
321ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝐺 ∈ Mnd)
332ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑅𝐵)
34 simplr 767 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝑅)
3533, 34sseldd 3983 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝐵)
363ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑇𝐵)
37 simprl 769 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝑇)
3836, 37sseldd 3983 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝐵)
3919ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑈𝐵)
40 simprr 771 . . . . . . . . . 10 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝑈)
4139, 40sseldd 3983 . . . . . . . . 9 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝐵)
424, 5mndass 18712 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4332, 35, 38, 41, 42syl13anc 1369 . . . . . . . 8 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4443eqeq2d 2739 . . . . . . 7 (((𝜑𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → (𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
45442rexbidva 3215 . . . . . 6 ((𝜑𝑎𝑅) → (∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
4631, 45bitr4d 281 . . . . 5 ((𝜑𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4746rexbidva 3174 . . . 4 (𝜑 → (∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
4818, 47bitr4d 281 . . 3 (𝜑 → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
494, 6lsmssv 19612 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑅𝐵𝑇𝐵) → (𝑅 𝑇) ⊆ 𝐵)
501, 2, 3, 49syl3anc 1368 . . . 4 (𝜑 → (𝑅 𝑇) ⊆ 𝐵)
514, 5, 6lsmelvalx 19609 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑅 𝑇) ⊆ 𝐵𝑈𝐵) → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
521, 50, 19, 51syl3anc 1368 . . 3 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
534, 6lsmssv 19612 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) ⊆ 𝐵)
541, 3, 19, 53syl3anc 1368 . . . 4 (𝜑 → (𝑇 𝑈) ⊆ 𝐵)
554, 5, 6lsmelvalx 19609 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑅𝐵 ∧ (𝑇 𝑈) ⊆ 𝐵) → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
561, 2, 54, 55syl3anc 1368 . . 3 (𝜑 → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
5748, 52, 563bitr4d 310 . 2 (𝜑 → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ 𝑥 ∈ (𝑅 (𝑇 𝑈))))
5857eqrdv 2726 1 (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  wrex 3067  Vcvv 3473  wss 3949  ran crn 5683  cfv 6553  (class class class)co 7426  cmpo 7428  Basecbs 17189  +gcplusg 17242  Mndcmnd 18703  LSSumclsm 19603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-mgm 18609  df-sgrp 18688  df-mnd 18704  df-lsm 19605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator