| Step | Hyp | Ref
| Expression |
| 1 | | lsmssass.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 2 | | lsmssass.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ⊆ 𝐵) |
| 3 | | lsmssass.t |
. . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ 𝐵) |
| 4 | | lsmssass.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 5 | | eqid 2737 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 6 | | lsmssass.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
| 7 | 4, 5, 6 | lsmvalx 19657 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑅 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑅 ⊕ 𝑇) = ran (𝑎 ∈ 𝑅, 𝑏 ∈ 𝑇 ↦ (𝑎(+g‘𝐺)𝑏))) |
| 8 | 1, 2, 3, 7 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝑅 ⊕ 𝑇) = ran (𝑎 ∈ 𝑅, 𝑏 ∈ 𝑇 ↦ (𝑎(+g‘𝐺)𝑏))) |
| 9 | 8 | rexeqdv 3327 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ (𝑅 ⊕ 𝑇)∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐) ↔ ∃𝑦 ∈ ran (𝑎 ∈ 𝑅, 𝑏 ∈ 𝑇 ↦ (𝑎(+g‘𝐺)𝑏))∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐))) |
| 10 | | ovex 7464 |
. . . . . . 7
⊢ (𝑎(+g‘𝐺)𝑏) ∈ V |
| 11 | 10 | rgen2w 3066 |
. . . . . 6
⊢
∀𝑎 ∈
𝑅 ∀𝑏 ∈ 𝑇 (𝑎(+g‘𝐺)𝑏) ∈ V |
| 12 | | eqid 2737 |
. . . . . . 7
⊢ (𝑎 ∈ 𝑅, 𝑏 ∈ 𝑇 ↦ (𝑎(+g‘𝐺)𝑏)) = (𝑎 ∈ 𝑅, 𝑏 ∈ 𝑇 ↦ (𝑎(+g‘𝐺)𝑏)) |
| 13 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑦 = (𝑎(+g‘𝐺)𝑏) → (𝑦(+g‘𝐺)𝑐) = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐)) |
| 14 | 13 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑦 = (𝑎(+g‘𝐺)𝑏) → (𝑥 = (𝑦(+g‘𝐺)𝑐) ↔ 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐))) |
| 15 | 14 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑦 = (𝑎(+g‘𝐺)𝑏) → (∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐) ↔ ∃𝑐 ∈ 𝑈 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐))) |
| 16 | 12, 15 | rexrnmpo 7573 |
. . . . . 6
⊢
(∀𝑎 ∈
𝑅 ∀𝑏 ∈ 𝑇 (𝑎(+g‘𝐺)𝑏) ∈ V → (∃𝑦 ∈ ran (𝑎 ∈ 𝑅, 𝑏 ∈ 𝑇 ↦ (𝑎(+g‘𝐺)𝑏))∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐) ↔ ∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐))) |
| 17 | 11, 16 | ax-mp 5 |
. . . . 5
⊢
(∃𝑦 ∈ ran
(𝑎 ∈ 𝑅, 𝑏 ∈ 𝑇 ↦ (𝑎(+g‘𝐺)𝑏))∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐) ↔ ∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐)) |
| 18 | 9, 17 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ (𝑅 ⊕ 𝑇)∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐) ↔ ∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐))) |
| 19 | | lsmssass.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 20 | 4, 5, 6 | lsmvalx 19657 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑏 ∈ 𝑇, 𝑐 ∈ 𝑈 ↦ (𝑏(+g‘𝐺)𝑐))) |
| 21 | 1, 3, 19, 20 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ⊕ 𝑈) = ran (𝑏 ∈ 𝑇, 𝑐 ∈ 𝑈 ↦ (𝑏(+g‘𝐺)𝑐))) |
| 22 | 21 | rexeqdv 3327 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ ∃𝑧 ∈ ran (𝑏 ∈ 𝑇, 𝑐 ∈ 𝑈 ↦ (𝑏(+g‘𝐺)𝑐))𝑥 = (𝑎(+g‘𝐺)𝑧))) |
| 23 | | ovex 7464 |
. . . . . . . . . 10
⊢ (𝑏(+g‘𝐺)𝑐) ∈ V |
| 24 | 23 | rgen2w 3066 |
. . . . . . . . 9
⊢
∀𝑏 ∈
𝑇 ∀𝑐 ∈ 𝑈 (𝑏(+g‘𝐺)𝑐) ∈ V |
| 25 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝑇, 𝑐 ∈ 𝑈 ↦ (𝑏(+g‘𝐺)𝑐)) = (𝑏 ∈ 𝑇, 𝑐 ∈ 𝑈 ↦ (𝑏(+g‘𝐺)𝑐)) |
| 26 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑏(+g‘𝐺)𝑐) → (𝑎(+g‘𝐺)𝑧) = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐))) |
| 27 | 26 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑏(+g‘𝐺)𝑐) → (𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ 𝑥 = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐)))) |
| 28 | 25, 27 | rexrnmpo 7573 |
. . . . . . . . 9
⊢
(∀𝑏 ∈
𝑇 ∀𝑐 ∈ 𝑈 (𝑏(+g‘𝐺)𝑐) ∈ V → (∃𝑧 ∈ ran (𝑏 ∈ 𝑇, 𝑐 ∈ 𝑈 ↦ (𝑏(+g‘𝐺)𝑐))𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐)))) |
| 29 | 24, 28 | ax-mp 5 |
. . . . . . . 8
⊢
(∃𝑧 ∈ ran
(𝑏 ∈ 𝑇, 𝑐 ∈ 𝑈 ↦ (𝑏(+g‘𝐺)𝑐))𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐))) |
| 30 | 22, 29 | bitrdi 287 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐)))) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑅) → (∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐)))) |
| 32 | 1 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝐺 ∈ Mnd) |
| 33 | 2 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑅 ⊆ 𝐵) |
| 34 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑎 ∈ 𝑅) |
| 35 | 33, 34 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑎 ∈ 𝐵) |
| 36 | 3 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑇 ⊆ 𝐵) |
| 37 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑏 ∈ 𝑇) |
| 38 | 36, 37 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑏 ∈ 𝐵) |
| 39 | 19 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑈 ⊆ 𝐵) |
| 40 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑐 ∈ 𝑈) |
| 41 | 39, 40 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → 𝑐 ∈ 𝐵) |
| 42 | 4, 5 | mndass 18756 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐) = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐))) |
| 43 | 32, 35, 38, 41, 42 | syl13anc 1374 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐) = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐))) |
| 44 | 43 | eqeq2d 2748 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑅) ∧ (𝑏 ∈ 𝑇 ∧ 𝑐 ∈ 𝑈)) → (𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐) ↔ 𝑥 = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐)))) |
| 45 | 44 | 2rexbidva 3220 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑅) → (∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐) ↔ ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = (𝑎(+g‘𝐺)(𝑏(+g‘𝐺)𝑐)))) |
| 46 | 31, 45 | bitr4d 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑅) → (∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐))) |
| 47 | 46 | rexbidva 3177 |
. . . 4
⊢ (𝜑 → (∃𝑎 ∈ 𝑅 ∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧) ↔ ∃𝑎 ∈ 𝑅 ∃𝑏 ∈ 𝑇 ∃𝑐 ∈ 𝑈 𝑥 = ((𝑎(+g‘𝐺)𝑏)(+g‘𝐺)𝑐))) |
| 48 | 18, 47 | bitr4d 282 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ (𝑅 ⊕ 𝑇)∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐) ↔ ∃𝑎 ∈ 𝑅 ∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧))) |
| 49 | 4, 6 | lsmssv 19661 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑅 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑅 ⊕ 𝑇) ⊆ 𝐵) |
| 50 | 1, 2, 3, 49 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑅 ⊕ 𝑇) ⊆ 𝐵) |
| 51 | 4, 5, 6 | lsmelvalx 19658 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑅 ⊕ 𝑇) ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ ((𝑅 ⊕ 𝑇) ⊕ 𝑈) ↔ ∃𝑦 ∈ (𝑅 ⊕ 𝑇)∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐))) |
| 52 | 1, 50, 19, 51 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ⊕ 𝑇) ⊕ 𝑈) ↔ ∃𝑦 ∈ (𝑅 ⊕ 𝑇)∃𝑐 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑐))) |
| 53 | 4, 6 | lsmssv 19661 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
| 54 | 1, 3, 19, 53 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ 𝐵) |
| 55 | 4, 5, 6 | lsmelvalx 19658 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑅 ⊆ 𝐵 ∧ (𝑇 ⊕ 𝑈) ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ (𝑇 ⊕ 𝑈)) ↔ ∃𝑎 ∈ 𝑅 ∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧))) |
| 56 | 1, 2, 54, 55 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝑅 ⊕ (𝑇 ⊕ 𝑈)) ↔ ∃𝑎 ∈ 𝑅 ∃𝑧 ∈ (𝑇 ⊕ 𝑈)𝑥 = (𝑎(+g‘𝐺)𝑧))) |
| 57 | 48, 52, 56 | 3bitr4d 311 |
. 2
⊢ (𝜑 → (𝑥 ∈ ((𝑅 ⊕ 𝑇) ⊕ 𝑈) ↔ 𝑥 ∈ (𝑅 ⊕ (𝑇 ⊕ 𝑈)))) |
| 58 | 57 | eqrdv 2735 |
1
⊢ (𝜑 → ((𝑅 ⊕ 𝑇) ⊕ 𝑈) = (𝑅 ⊕ (𝑇 ⊕ 𝑈))) |