Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline3 Structured version   Visualization version   GIF version

Theorem isline3 39758
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012.)
Hypotheses
Ref Expression
isline3.b 𝐵 = (Base‘𝐾)
isline3.j = (join‘𝐾)
isline3.a 𝐴 = (Atoms‘𝐾)
isline3.n 𝑁 = (Lines‘𝐾)
isline3.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
isline3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
Distinct variable groups:   𝑞,𝑝,𝐵   𝐴,𝑝,𝑞   𝐾,𝑝,𝑞   𝑀,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem isline3
StepHypRef Expression
1 hllat 39344 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21adantr 480 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 isline3.j . . . 4 = (join‘𝐾)
4 isline3.a . . . 4 𝐴 = (Atoms‘𝐾)
5 isline3.n . . . 4 𝑁 = (Lines‘𝐾)
6 isline3.m . . . 4 𝑀 = (pmap‘𝐾)
73, 4, 5, 6isline2 39756 . . 3 (𝐾 ∈ Lat → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞 ∧ (𝑀𝑋) = (𝑀‘(𝑝 𝑞)))))
82, 7syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞 ∧ (𝑀𝑋) = (𝑀‘(𝑝 𝑞)))))
9 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ HL)
10 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑋𝐵)
111ad2antrr 726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ Lat)
12 isline3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
1312, 4atbase 39270 . . . . . . 7 (𝑝𝐴𝑝𝐵)
1413ad2antrl 728 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐵)
1512, 4atbase 39270 . . . . . . 7 (𝑞𝐴𝑞𝐵)
1615ad2antll 729 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐵)
1712, 3latjcl 18363 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑞𝐵) → (𝑝 𝑞) ∈ 𝐵)
1811, 14, 16, 17syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (𝑝 𝑞) ∈ 𝐵)
1912, 6pmap11 39744 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑝 𝑞) ∈ 𝐵) → ((𝑀𝑋) = (𝑀‘(𝑝 𝑞)) ↔ 𝑋 = (𝑝 𝑞)))
209, 10, 18, 19syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → ((𝑀𝑋) = (𝑀‘(𝑝 𝑞)) ↔ 𝑋 = (𝑝 𝑞)))
2120anbi2d 630 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → ((𝑝𝑞 ∧ (𝑀𝑋) = (𝑀‘(𝑝 𝑞))) ↔ (𝑝𝑞𝑋 = (𝑝 𝑞))))
22212rexbidva 3192 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞 ∧ (𝑀𝑋) = (𝑀‘(𝑝 𝑞))) ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
238, 22bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cfv 6486  (class class class)co 7353  Basecbs 17138  joincjn 18235  Latclat 18355  Atomscatm 39244  HLchlt 39331  Linesclines 39476  pmapcpmap 39479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-lines 39483  df-pmap 39486
This theorem is referenced by:  isline4N  39759  lneq2at  39760  lnatexN  39761  lncvrat  39764  lncmp  39765
  Copyright terms: Public domain W3C validator