![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline3 | Structured version Visualization version GIF version |
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012.) |
Ref | Expression |
---|---|
isline3.b | ⊢ 𝐵 = (Base‘𝐾) |
isline3.j | ⊢ ∨ = (join‘𝐾) |
isline3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline3.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline3.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
isline3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39061 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
3 | isline3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | isline3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | isline3.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
6 | isline3.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
7 | 3, 4, 5, 6 | isline2 39473 | . . 3 ⊢ (𝐾 ∈ Lat → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))))) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))))) |
9 | simpll 765 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ HL) | |
10 | simplr 767 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | |
11 | 1 | ad2antrr 724 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) |
12 | isline3.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
13 | 12, 4 | atbase 38987 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
14 | 13 | ad2antrl 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ 𝐵) |
15 | 12, 4 | atbase 38987 | . . . . . . 7 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵) |
16 | 15 | ad2antll 727 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐵) |
17 | 12, 3 | latjcl 18464 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
18 | 11, 14, 16, 17 | syl3anc 1368 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
19 | 12, 6 | pmap11 39461 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑝 ∨ 𝑞) ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
20 | 9, 10, 18, 19 | syl3anc 1368 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
21 | 20 | anbi2d 628 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
22 | 21 | 2rexbidva 3208 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
23 | 8, 22 | bitrd 278 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 joincjn 18336 Latclat 18456 Atomscatm 38961 HLchlt 39048 Linesclines 39193 pmapcpmap 39196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-proset 18320 df-poset 18338 df-plt 18355 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-p0 18450 df-lat 18457 df-clat 18524 df-oposet 38874 df-ol 38876 df-oml 38877 df-covers 38964 df-ats 38965 df-atl 38996 df-cvlat 39020 df-hlat 39049 df-lines 39200 df-pmap 39203 |
This theorem is referenced by: isline4N 39476 lneq2at 39477 lnatexN 39478 lncvrat 39481 lncmp 39482 |
Copyright terms: Public domain | W3C validator |