| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isline3 | Structured version Visualization version GIF version | ||
| Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012.) |
| Ref | Expression |
|---|---|
| isline3.b | ⊢ 𝐵 = (Base‘𝐾) |
| isline3.j | ⊢ ∨ = (join‘𝐾) |
| isline3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| isline3.n | ⊢ 𝑁 = (Lines‘𝐾) |
| isline3.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| isline3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39344 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 3 | isline3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | isline3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | isline3.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
| 6 | isline3.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 7 | 3, 4, 5, 6 | isline2 39756 | . . 3 ⊢ (𝐾 ∈ Lat → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))))) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))))) |
| 9 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ HL) | |
| 10 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | |
| 11 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 12 | isline3.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | 12, 4 | atbase 39270 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
| 14 | 13 | ad2antrl 728 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ 𝐵) |
| 15 | 12, 4 | atbase 39270 | . . . . . . 7 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵) |
| 16 | 15 | ad2antll 729 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐵) |
| 17 | 12, 3 | latjcl 18363 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
| 18 | 11, 14, 16, 17 | syl3anc 1373 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
| 19 | 12, 6 | pmap11 39744 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑝 ∨ 𝑞) ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
| 20 | 9, 10, 18, 19 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
| 21 | 20 | anbi2d 630 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
| 22 | 21 | 2rexbidva 3192 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
| 23 | 8, 22 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 joincjn 18235 Latclat 18355 Atomscatm 39244 HLchlt 39331 Linesclines 39476 pmapcpmap 39479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-lat 18356 df-clat 18423 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-lines 39483 df-pmap 39486 |
| This theorem is referenced by: isline4N 39759 lneq2at 39760 lnatexN 39761 lncvrat 39764 lncmp 39765 |
| Copyright terms: Public domain | W3C validator |