Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline3 | Structured version Visualization version GIF version |
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012.) |
Ref | Expression |
---|---|
isline3.b | ⊢ 𝐵 = (Base‘𝐾) |
isline3.j | ⊢ ∨ = (join‘𝐾) |
isline3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline3.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline3.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
isline3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37304 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
3 | isline3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | isline3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | isline3.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
6 | isline3.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
7 | 3, 4, 5, 6 | isline2 37715 | . . 3 ⊢ (𝐾 ∈ Lat → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))))) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))))) |
9 | simpll 763 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ HL) | |
10 | simplr 765 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | |
11 | 1 | ad2antrr 722 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) |
12 | isline3.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
13 | 12, 4 | atbase 37230 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
14 | 13 | ad2antrl 724 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ 𝐵) |
15 | 12, 4 | atbase 37230 | . . . . . . 7 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵) |
16 | 15 | ad2antll 725 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐵) |
17 | 12, 3 | latjcl 18072 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
18 | 11, 14, 16, 17 | syl3anc 1369 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
19 | 12, 6 | pmap11 37703 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑝 ∨ 𝑞) ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
20 | 9, 10, 18, 19 | syl3anc 1369 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
21 | 20 | anbi2d 628 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
22 | 21 | 2rexbidva 3227 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑀‘𝑋) = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
23 | 8, 22 | bitrd 278 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 joincjn 17944 Latclat 18064 Atomscatm 37204 HLchlt 37291 Linesclines 37435 pmapcpmap 37438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lines 37442 df-pmap 37445 |
This theorem is referenced by: isline4N 37718 lneq2at 37719 lnatexN 37720 lncvrat 37723 lncmp 37724 |
Copyright terms: Public domain | W3C validator |