| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2cex | Structured version Visualization version GIF version | ||
| Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 40565? (Contributed by NM, 22-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemg2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemg2.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg2.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg2.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemg2ex.u | ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) |
| cdlemg2ex.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg2ex.e | ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg2ex.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| Ref | Expression |
|---|---|
| cdlemg2cex | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdlemg2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | cdlemg2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | cdlemg2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | cdlemg1cex 40590 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)))) |
| 6 | simplll 775 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝐾 ∈ HL) | |
| 7 | simpllr 776 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑊 ∈ 𝐻) | |
| 8 | simplrl 777 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑝 ∈ 𝐴) | |
| 9 | simprl 771 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → ¬ 𝑝 ≤ 𝑊) | |
| 10 | simplrr 778 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝑞 ∈ 𝐴) | |
| 11 | simprr 773 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → ¬ 𝑞 ≤ 𝑊) | |
| 12 | cdlemg2.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | cdlemg2.j | . . . . . . . 8 ⊢ ∨ = (join‘𝐾) | |
| 14 | cdlemg2.m | . . . . . . . 8 ⊢ ∧ = (meet‘𝐾) | |
| 15 | cdlemg2ex.u | . . . . . . . 8 ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
| 16 | cdlemg2ex.d | . . . . . . . 8 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
| 17 | cdlemg2ex.e | . . . . . . . 8 ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 18 | cdlemg2ex.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 19 | eqid 2737 | . . . . . . . 8 ⊢ (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) | |
| 20 | 12, 1, 13, 14, 2, 3, 15, 16, 17, 18, 4, 19 | cdlemg1b2 40573 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) = 𝐺) |
| 21 | 6, 7, 8, 9, 10, 11, 20 | syl222anc 1388 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) = 𝐺) |
| 22 | 21 | eqeq2d 2748 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → (𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) ↔ 𝐹 = 𝐺)) |
| 23 | 22 | pm5.32da 579 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = 𝐺))) |
| 24 | df-3an 1089 | . . . 4 ⊢ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) | |
| 25 | df-3an 1089 | . . . 4 ⊢ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ∧ 𝐹 = 𝐺)) | |
| 26 | 23, 24, 25 | 3bitr4g 314 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
| 27 | 26 | 2rexbidva 3220 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
| 28 | 5, 27 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⦋csb 3899 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 meetcmee 18358 Atomscatm 39264 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-riotaBAD 38954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-undef 8298 df-map 8868 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 |
| This theorem is referenced by: cdlemg2ce 40594 |
| Copyright terms: Public domain | W3C validator |