Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2cex Structured version   Visualization version   GIF version

Theorem cdlemg2cex 40610
Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 40582? (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2.b 𝐵 = (Base‘𝐾)
cdlemg2.l = (le‘𝐾)
cdlemg2.j = (join‘𝐾)
cdlemg2.m = (meet‘𝐾)
cdlemg2.a 𝐴 = (Atoms‘𝐾)
cdlemg2.h 𝐻 = (LHyp‘𝐾)
cdlemg2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2ex.u 𝑈 = ((𝑝 𝑞) 𝑊)
cdlemg2ex.d 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
cdlemg2ex.e 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemg2ex.g 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
Assertion
Ref Expression
cdlemg2cex ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
Distinct variable groups:   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑞,𝑝,𝐴   𝐹,𝑝,𝑞   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑇,𝑝,𝑞   𝑊,𝑝,𝑞,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑡,𝑞,𝑝)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑈(𝑞,𝑝)   𝐸(𝑡,𝑠,𝑞,𝑝)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑠,𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem cdlemg2cex
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cdlemg2.l . . 3 = (le‘𝐾)
2 cdlemg2.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdlemg2.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdlemg2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdlemg1cex 40607 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
6 simplll 774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝐾 ∈ HL)
7 simpllr 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑊𝐻)
8 simplrl 776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑝𝐴)
9 simprl 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ¬ 𝑝 𝑊)
10 simplrr 777 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑞𝐴)
11 simprr 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ¬ 𝑞 𝑊)
12 cdlemg2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
13 cdlemg2.j . . . . . . . 8 = (join‘𝐾)
14 cdlemg2.m . . . . . . . 8 = (meet‘𝐾)
15 cdlemg2ex.u . . . . . . . 8 𝑈 = ((𝑝 𝑞) 𝑊)
16 cdlemg2ex.d . . . . . . . 8 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
17 cdlemg2ex.e . . . . . . . 8 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
18 cdlemg2ex.g . . . . . . . 8 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
19 eqid 2735 . . . . . . . 8 (𝑓𝑇 (𝑓𝑝) = 𝑞) = (𝑓𝑇 (𝑓𝑝) = 𝑞)
2012, 1, 13, 14, 2, 3, 15, 16, 17, 18, 4, 19cdlemg1b2 40590 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = 𝐺)
216, 7, 8, 9, 10, 11, 20syl222anc 1388 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = 𝐺)
2221eqeq2d 2746 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → (𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞) ↔ 𝐹 = 𝐺))
2322pm5.32da 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = 𝐺)))
24 df-3an 1088 . . . 4 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
25 df-3an 1088 . . . 4 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = 𝐺))
2623, 24, 253bitr4g 314 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
27262rexbidva 3204 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
285, 27bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  csb 3874  ifcif 4500   class class class wbr 5119  cmpt 5201  cfv 6531  crio 7361  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  Atomscatm 39281  HLchlt 39368  LHypclh 40003  LTrncltrn 40120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-undef 8272  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by:  cdlemg2ce  40611
  Copyright terms: Public domain W3C validator