Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2cex Structured version   Visualization version   GIF version

Theorem cdlemg2cex 40585
Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 40557? (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2.b 𝐵 = (Base‘𝐾)
cdlemg2.l = (le‘𝐾)
cdlemg2.j = (join‘𝐾)
cdlemg2.m = (meet‘𝐾)
cdlemg2.a 𝐴 = (Atoms‘𝐾)
cdlemg2.h 𝐻 = (LHyp‘𝐾)
cdlemg2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2ex.u 𝑈 = ((𝑝 𝑞) 𝑊)
cdlemg2ex.d 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
cdlemg2ex.e 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemg2ex.g 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
Assertion
Ref Expression
cdlemg2cex ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
Distinct variable groups:   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑞,𝑝,𝐴   𝐹,𝑝,𝑞   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑇,𝑝,𝑞   𝑊,𝑝,𝑞,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑡,𝑞,𝑝)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑈(𝑞,𝑝)   𝐸(𝑡,𝑠,𝑞,𝑝)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑠,𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem cdlemg2cex
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cdlemg2.l . . 3 = (le‘𝐾)
2 cdlemg2.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdlemg2.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdlemg2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdlemg1cex 40582 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
6 simplll 774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝐾 ∈ HL)
7 simpllr 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑊𝐻)
8 simplrl 776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑝𝐴)
9 simprl 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ¬ 𝑝 𝑊)
10 simplrr 777 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑞𝐴)
11 simprr 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ¬ 𝑞 𝑊)
12 cdlemg2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
13 cdlemg2.j . . . . . . . 8 = (join‘𝐾)
14 cdlemg2.m . . . . . . . 8 = (meet‘𝐾)
15 cdlemg2ex.u . . . . . . . 8 𝑈 = ((𝑝 𝑞) 𝑊)
16 cdlemg2ex.d . . . . . . . 8 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
17 cdlemg2ex.e . . . . . . . 8 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
18 cdlemg2ex.g . . . . . . . 8 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
19 eqid 2729 . . . . . . . 8 (𝑓𝑇 (𝑓𝑝) = 𝑞) = (𝑓𝑇 (𝑓𝑝) = 𝑞)
2012, 1, 13, 14, 2, 3, 15, 16, 17, 18, 4, 19cdlemg1b2 40565 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = 𝐺)
216, 7, 8, 9, 10, 11, 20syl222anc 1388 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = 𝐺)
2221eqeq2d 2740 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → (𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞) ↔ 𝐹 = 𝐺))
2322pm5.32da 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = 𝐺)))
24 df-3an 1088 . . . 4 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
25 df-3an 1088 . . . 4 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = 𝐺))
2623, 24, 253bitr4g 314 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
27262rexbidva 3200 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
285, 27bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  csb 3862  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  cdlemg2ce  40586
  Copyright terms: Public domain W3C validator