Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2cex Structured version   Visualization version   GIF version

Theorem cdlemg2cex 40570
Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 40542? (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2.b 𝐵 = (Base‘𝐾)
cdlemg2.l = (le‘𝐾)
cdlemg2.j = (join‘𝐾)
cdlemg2.m = (meet‘𝐾)
cdlemg2.a 𝐴 = (Atoms‘𝐾)
cdlemg2.h 𝐻 = (LHyp‘𝐾)
cdlemg2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2ex.u 𝑈 = ((𝑝 𝑞) 𝑊)
cdlemg2ex.d 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
cdlemg2ex.e 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemg2ex.g 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
Assertion
Ref Expression
cdlemg2cex ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
Distinct variable groups:   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑞,𝑝,𝐴   𝐹,𝑝,𝑞   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑇,𝑝,𝑞   𝑊,𝑝,𝑞,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑡,𝑞,𝑝)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑈(𝑞,𝑝)   𝐸(𝑡,𝑠,𝑞,𝑝)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑠,𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem cdlemg2cex
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cdlemg2.l . . 3 = (le‘𝐾)
2 cdlemg2.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdlemg2.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdlemg2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdlemg1cex 40567 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
6 simplll 774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝐾 ∈ HL)
7 simpllr 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑊𝐻)
8 simplrl 776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑝𝐴)
9 simprl 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ¬ 𝑝 𝑊)
10 simplrr 777 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → 𝑞𝐴)
11 simprr 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ¬ 𝑞 𝑊)
12 cdlemg2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
13 cdlemg2.j . . . . . . . 8 = (join‘𝐾)
14 cdlemg2.m . . . . . . . 8 = (meet‘𝐾)
15 cdlemg2ex.u . . . . . . . 8 𝑈 = ((𝑝 𝑞) 𝑊)
16 cdlemg2ex.d . . . . . . . 8 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
17 cdlemg2ex.e . . . . . . . 8 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
18 cdlemg2ex.g . . . . . . . 8 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
19 eqid 2729 . . . . . . . 8 (𝑓𝑇 (𝑓𝑝) = 𝑞) = (𝑓𝑇 (𝑓𝑝) = 𝑞)
2012, 1, 13, 14, 2, 3, 15, 16, 17, 18, 4, 19cdlemg1b2 40550 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = 𝐺)
216, 7, 8, 9, 10, 11, 20syl222anc 1388 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = 𝐺)
2221eqeq2d 2740 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → (𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞) ↔ 𝐹 = 𝐺))
2322pm5.32da 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = 𝐺)))
24 df-3an 1088 . . . 4 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
25 df-3an 1088 . . . 4 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ∧ 𝐹 = 𝐺))
2623, 24, 253bitr4g 314 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
27262rexbidva 3192 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
285, 27bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  csb 3853  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  Atomscatm 39241  HLchlt 39328  LHypclh 39963  LTrncltrn 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-map 8762  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138
This theorem is referenced by:  cdlemg2ce  40571
  Copyright terms: Public domain W3C validator