MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmass Structured version   Visualization version   GIF version

Theorem lsmass 19537
Description: Subgroup sum is associative. (Contributed by NM, 2-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmass ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))

Proof of Theorem lsmass
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑐 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2733 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3 lsmub1.p . . . . . . . 8 = (LSSum‘𝐺)
41, 2, 3lsmval 19516 . . . . . . 7 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
543adant3 1133 . . . . . 6 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑅 𝑇) = ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)))
65rexeqdv 3327 . . . . 5 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
7 ovex 7442 . . . . . . 7 (𝑎(+g𝐺)𝑏) ∈ V
87rgen2w 3067 . . . . . 6 𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V
9 eqid 2733 . . . . . . 7 (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏)) = (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))
10 oveq1 7416 . . . . . . . . 9 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑦(+g𝐺)𝑐) = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
1110eqeq2d 2744 . . . . . . . 8 (𝑦 = (𝑎(+g𝐺)𝑏) → (𝑥 = (𝑦(+g𝐺)𝑐) ↔ 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
1211rexbidv 3179 . . . . . . 7 (𝑦 = (𝑎(+g𝐺)𝑏) → (∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
139, 12rexrnmpo 7548 . . . . . 6 (∀𝑎𝑅𝑏𝑇 (𝑎(+g𝐺)𝑏) ∈ V → (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
148, 13ax-mp 5 . . . . 5 (∃𝑦 ∈ ran (𝑎𝑅, 𝑏𝑇 ↦ (𝑎(+g𝐺)𝑏))∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐))
156, 14bitrdi 287 . . . 4 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
161, 2, 3lsmval 19516 . . . . . . . . . 10 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
17163adant1 1131 . . . . . . . . 9 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)))
1817rexeqdv 3327 . . . . . . . 8 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧)))
19 ovex 7442 . . . . . . . . . 10 (𝑏(+g𝐺)𝑐) ∈ V
2019rgen2w 3067 . . . . . . . . 9 𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V
21 eqid 2733 . . . . . . . . . 10 (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐)) = (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))
22 oveq2 7417 . . . . . . . . . . 11 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑎(+g𝐺)𝑧) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
2322eqeq2d 2744 . . . . . . . . . 10 (𝑧 = (𝑏(+g𝐺)𝑐) → (𝑥 = (𝑎(+g𝐺)𝑧) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2421, 23rexrnmpo 7548 . . . . . . . . 9 (∀𝑏𝑇𝑐𝑈 (𝑏(+g𝐺)𝑐) ∈ V → (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2520, 24ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran (𝑏𝑇, 𝑐𝑈 ↦ (𝑏(+g𝐺)𝑐))𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
2618, 25bitrdi 287 . . . . . . 7 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
2726adantr 482 . . . . . 6 (((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
28 subgrcl 19011 . . . . . . . . . . 11 (𝑅 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
29283ad2ant1 1134 . . . . . . . . . 10 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3029ad2antrr 725 . . . . . . . . 9 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝐺 ∈ Grp)
311subgss 19007 . . . . . . . . . . . 12 (𝑅 ∈ (SubGrp‘𝐺) → 𝑅 ⊆ (Base‘𝐺))
32313ad2ant1 1134 . . . . . . . . . . 11 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑅 ⊆ (Base‘𝐺))
3332ad2antrr 725 . . . . . . . . . 10 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑅 ⊆ (Base‘𝐺))
34 simplr 768 . . . . . . . . . 10 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎𝑅)
3533, 34sseldd 3984 . . . . . . . . 9 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑎 ∈ (Base‘𝐺))
361subgss 19007 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
37363ad2ant2 1135 . . . . . . . . . . 11 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (Base‘𝐺))
3837ad2antrr 725 . . . . . . . . . 10 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑇 ⊆ (Base‘𝐺))
39 simprl 770 . . . . . . . . . 10 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏𝑇)
4038, 39sseldd 3984 . . . . . . . . 9 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑏 ∈ (Base‘𝐺))
411subgss 19007 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
42413ad2ant3 1136 . . . . . . . . . . 11 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ⊆ (Base‘𝐺))
4342ad2antrr 725 . . . . . . . . . 10 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑈 ⊆ (Base‘𝐺))
44 simprr 772 . . . . . . . . . 10 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐𝑈)
4543, 44sseldd 3984 . . . . . . . . 9 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → 𝑐 ∈ (Base‘𝐺))
461, 2grpass 18828 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺) ∧ 𝑐 ∈ (Base‘𝐺))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4730, 35, 40, 45, 46syl13anc 1373 . . . . . . . 8 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐)))
4847eqeq2d 2744 . . . . . . 7 ((((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) ∧ (𝑏𝑇𝑐𝑈)) → (𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
49482rexbidva 3218 . . . . . 6 (((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) → (∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)(𝑏(+g𝐺)𝑐))))
5027, 49bitr4d 282 . . . . 5 (((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑎𝑅) → (∃𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
5150rexbidva 3177 . . . 4 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧) ↔ ∃𝑎𝑅𝑏𝑇𝑐𝑈 𝑥 = ((𝑎(+g𝐺)𝑏)(+g𝐺)𝑐)))
5215, 51bitr4d 282 . . 3 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
5329grpmndd 18832 . . . . 5 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Mnd)
541, 3lsmssv 19511 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑅 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) → (𝑅 𝑇) ⊆ (Base‘𝐺))
5553, 32, 37, 54syl3anc 1372 . . . 4 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑅 𝑇) ⊆ (Base‘𝐺))
561, 2, 3lsmelvalx 19508 . . . 4 ((𝐺 ∈ Grp ∧ (𝑅 𝑇) ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
5729, 55, 42, 56syl3anc 1372 . . 3 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ ∃𝑦 ∈ (𝑅 𝑇)∃𝑐𝑈 𝑥 = (𝑦(+g𝐺)𝑐)))
581, 3lsmssv 19511 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
5953, 37, 42, 58syl3anc 1372 . . . 4 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
601, 2, 3lsmelvalx 19508 . . . 4 ((𝐺 ∈ Grp ∧ 𝑅 ⊆ (Base‘𝐺) ∧ (𝑇 𝑈) ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
6129, 32, 59, 60syl3anc 1372 . . 3 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑅 (𝑇 𝑈)) ↔ ∃𝑎𝑅𝑧 ∈ (𝑇 𝑈)𝑥 = (𝑎(+g𝐺)𝑧)))
6252, 57, 613bitr4d 311 . 2 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ ((𝑅 𝑇) 𝑈) ↔ 𝑥 ∈ (𝑅 (𝑇 𝑈))))
6362eqrdv 2731 1 ((𝑅 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  wss 3949  ran crn 5678  cfv 6544  (class class class)co 7409  cmpo 7411  Basecbs 17144  +gcplusg 17197  Mndcmnd 18625  Grpcgrp 18819  SubGrpcsubg 19000  LSSumclsm 19502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-subg 19003  df-lsm 19504
This theorem is referenced by:  lsm4  19728  pgpfac1lem3  19947  idlsrgmnd  32628  lsatcvat3  37922
  Copyright terms: Public domain W3C validator