MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcom2 Structured version   Visualization version   GIF version

Theorem lsmcom2 19585
Description: Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmcom2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcom2
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑍𝑈))
21sselda 3946 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ 𝑎𝑇) → 𝑎 ∈ (𝑍𝑈))
32adantrr 717 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎 ∈ (𝑍𝑈))
4 simprr 772 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏𝑈)
5 eqid 2729 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 lsmsubg.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
75, 6cntzi 19261 . . . . . . 7 ((𝑎 ∈ (𝑍𝑈) ∧ 𝑏𝑈) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
83, 4, 7syl2anc 584 . . . . . 6 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
98eqeq2d 2740 . . . . 5 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑥 = (𝑎(+g𝐺)𝑏) ↔ 𝑥 = (𝑏(+g𝐺)𝑎)))
1092rexbidva 3200 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑏(+g𝐺)𝑎)))
11 rexcom 3266 . . . 4 (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑏(+g𝐺)𝑎) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎))
1210, 11bitrdi 287 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
13 lsmsubg.p . . . . 5 = (LSSum‘𝐺)
145, 13lsmelval 19579 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
15143adant3 1132 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
165, 13lsmelval 19579 . . . . 5 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
1716ancoms 458 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
18173adant3 1132 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
1912, 15, 183bitr4d 311 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (𝑈 𝑇)))
2019eqrdv 2727 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3914  cfv 6511  (class class class)co 7387  +gcplusg 17220  SubGrpcsubg 19052  Cntzccntz 19247  LSSumclsm 19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-subg 19055  df-cntz 19249  df-lsm 19566
This theorem is referenced by:  lsmdisj3  19613  lsmdisj3r  19616  lsmdisj3a  19619  lsmdisj3b  19620  pj2f  19628  pj1id  19629
  Copyright terms: Public domain W3C validator