MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcomx Structured version   Visualization version   GIF version

Theorem lsmcomx 18612
Description: Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcomx.v 𝐵 = (Base‘𝐺)
lsmcomx.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmcomx ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcomx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1248 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝐺 ∈ Abel)
2 simpl2 1250 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑇𝐵)
3 simprl 789 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑇)
42, 3sseldd 3828 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝐵)
5 simpl3 1252 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑈𝐵)
6 simprr 791 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑈)
75, 6sseldd 3828 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝐵)
8 lsmcomx.v . . . . . . . 8 𝐵 = (Base‘𝐺)
9 eqid 2825 . . . . . . . 8 (+g𝐺) = (+g𝐺)
108, 9ablcom 18563 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
111, 4, 7, 10syl3anc 1496 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
1211eqeq2d 2835 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → (𝑥 = (𝑦(+g𝐺)𝑧) ↔ 𝑥 = (𝑧(+g𝐺)𝑦)))
13122rexbidva 3266 . . . 4 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑧(+g𝐺)𝑦)))
14 rexcom 3309 . . . 4 (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑧(+g𝐺)𝑦) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦))
1513, 14syl6bb 279 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
16 lsmcomx.s . . . 4 = (LSSum‘𝐺)
178, 9, 16lsmelvalx 18406 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
188, 9, 16lsmelvalx 18406 . . . 4 ((𝐺 ∈ Abel ∧ 𝑈𝐵𝑇𝐵) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
19183com23 1162 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
2015, 17, 193bitr4d 303 . 2 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (𝑈 𝑇)))
2120eqrdv 2823 1 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wrex 3118  wss 3798  cfv 6123  (class class class)co 6905  Basecbs 16222  +gcplusg 16305  LSSumclsm 18400  Abelcabl 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-lsm 18402  df-cmn 18548  df-abl 18549
This theorem is referenced by:  lsmcom  18614
  Copyright terms: Public domain W3C validator