MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcomx Structured version   Visualization version   GIF version

Theorem lsmcomx 19889
Description: Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcomx.v 𝐵 = (Base‘𝐺)
lsmcomx.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmcomx ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcomx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝐺 ∈ Abel)
2 simpl2 1191 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑇𝐵)
3 simprl 771 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑇)
42, 3sseldd 3996 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝐵)
5 simpl3 1192 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑈𝐵)
6 simprr 773 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑈)
75, 6sseldd 3996 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝐵)
8 lsmcomx.v . . . . . . . 8 𝐵 = (Base‘𝐺)
9 eqid 2735 . . . . . . . 8 (+g𝐺) = (+g𝐺)
108, 9ablcom 19832 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
111, 4, 7, 10syl3anc 1370 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
1211eqeq2d 2746 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → (𝑥 = (𝑦(+g𝐺)𝑧) ↔ 𝑥 = (𝑧(+g𝐺)𝑦)))
13122rexbidva 3218 . . . 4 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑧(+g𝐺)𝑦)))
14 rexcom 3288 . . . 4 (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑧(+g𝐺)𝑦) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦))
1513, 14bitrdi 287 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
16 lsmcomx.s . . . 4 = (LSSum‘𝐺)
178, 9, 16lsmelvalx 19673 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
188, 9, 16lsmelvalx 19673 . . . 4 ((𝐺 ∈ Abel ∧ 𝑈𝐵𝑇𝐵) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
19183com23 1125 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
2015, 17, 193bitr4d 311 . 2 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (𝑈 𝑇)))
2120eqrdv 2733 1 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  LSSumclsm 19667  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-lsm 19669  df-cmn 19815  df-abl 19816
This theorem is referenced by:  lsmcom  19891
  Copyright terms: Public domain W3C validator