| Step | Hyp | Ref
| Expression |
| 1 | | sategoelfvb.s |
. . . . 5
⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) |
| 2 | | ovexd 7440 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴∈𝑔𝐵) ∈ V) |
| 3 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈
ω) |
| 4 | | opeq1 4849 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) |
| 5 | 4 | opeq2d 4856 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → 〈∅, 〈𝑎, 𝑏〉〉 = 〈∅, 〈𝐴, 𝑏〉〉) |
| 6 | 5 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉 ↔ 〈∅,
〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉)) |
| 7 | 6 | rexbidv 3164 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉 ↔ ∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉)) |
| 8 | 7 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑎 = 𝐴) → (∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉 ↔ ∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉)) |
| 9 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈
ω) |
| 10 | | opeq2 4850 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) |
| 11 | 10 | opeq2d 4856 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 → 〈∅, 〈𝐴, 𝑏〉〉 = 〈∅, 〈𝐴, 𝐵〉〉) |
| 12 | 11 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → (〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉 ↔ 〈∅,
〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝐵〉〉)) |
| 13 | 12 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑏 = 𝐵) → (〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉 ↔ 〈∅,
〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝐵〉〉)) |
| 14 | | eqidd 2736 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
〈∅, 〈𝐴,
𝐵〉〉 =
〈∅, 〈𝐴,
𝐵〉〉) |
| 15 | 9, 13, 14 | rspcedvd 3603 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
∃𝑏 ∈ ω
〈∅, 〈𝐴,
𝐵〉〉 =
〈∅, 〈𝐴,
𝑏〉〉) |
| 16 | 3, 8, 15 | rspcedvd 3603 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
∃𝑎 ∈ ω
∃𝑏 ∈ ω
〈∅, 〈𝐴,
𝐵〉〉 =
〈∅, 〈𝑎,
𝑏〉〉) |
| 17 | | goel 35369 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴∈𝑔𝐵) = 〈∅, 〈𝐴, 𝐵〉〉) |
| 18 | | goel 35369 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎∈𝑔𝑏) = 〈∅, 〈𝑎, 𝑏〉〉) |
| 19 | 17, 18 | eqeqan12d 2749 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏) ↔ 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉)) |
| 20 | 19 | 2rexbidva 3204 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑎 ∈ ω
∃𝑏 ∈ ω
(𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉)) |
| 21 | 16, 20 | mpbird 257 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
∃𝑎 ∈ ω
∃𝑏 ∈ ω
(𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏)) |
| 22 | | eqeq1 2739 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴∈𝑔𝐵) → (𝑥 = (𝑎∈𝑔𝑏) ↔ (𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏))) |
| 23 | 22 | 2rexbidv 3206 |
. . . . . . . 8
⊢ (𝑥 = (𝐴∈𝑔𝐵) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎∈𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏))) |
| 24 | | fmla0 35404 |
. . . . . . . 8
⊢
(Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎∈𝑔𝑏)} |
| 25 | 23, 24 | elrab2 3674 |
. . . . . . 7
⊢ ((𝐴∈𝑔𝐵) ∈ (Fmla‘∅)
↔ ((𝐴∈𝑔𝐵) ∈ V ∧ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏))) |
| 26 | 2, 21, 25 | sylanbrc 583 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴∈𝑔𝐵) ∈
(Fmla‘∅)) |
| 27 | | satefvfmla0 35440 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴∈𝑔𝐵) ∈ (Fmla‘∅)) → (𝑀 Sat∈ (𝐴∈𝑔𝐵)) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))}) |
| 28 | 26, 27 | sylan2 593 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑀 Sat∈ (𝐴∈𝑔𝐵)) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))}) |
| 29 | 1, 28 | eqtrid 2782 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐸 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))}) |
| 30 | 29 | eleq2d 2820 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))})) |
| 31 | | fveq1 6875 |
. . . . 5
⊢ (𝑎 = 𝑆 → (𝑎‘(1st ‘(2nd
‘(𝐴∈𝑔𝐵)))) = (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵))))) |
| 32 | | fveq1 6875 |
. . . . 5
⊢ (𝑎 = 𝑆 → (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵)))) = (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵))))) |
| 33 | 31, 32 | eleq12d 2828 |
. . . 4
⊢ (𝑎 = 𝑆 → ((𝑎‘(1st ‘(2nd
‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵)))) ↔ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))))) |
| 34 | 33 | elrab 3671 |
. . 3
⊢ (𝑆 ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))} ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))))) |
| 35 | 30, 34 | bitrdi 287 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵))))))) |
| 36 | 17 | fveq2d 6880 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(𝐴∈𝑔𝐵)) = (2nd ‘〈∅,
〈𝐴, 𝐵〉〉)) |
| 37 | 36 | fveq2d 6880 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘(2nd ‘(𝐴∈𝑔𝐵))) = (1st ‘(2nd
‘〈∅, 〈𝐴, 𝐵〉〉))) |
| 38 | | 0ex 5277 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 39 | | opex 5439 |
. . . . . . . . . 10
⊢
〈𝐴, 𝐵〉 ∈ V |
| 40 | 38, 39 | op2nd 7997 |
. . . . . . . . 9
⊢
(2nd ‘〈∅, 〈𝐴, 𝐵〉〉) = 〈𝐴, 𝐵〉 |
| 41 | 40 | fveq2i 6879 |
. . . . . . . 8
⊢
(1st ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = (1st
‘〈𝐴, 𝐵〉) |
| 42 | | op1stg 8000 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| 43 | 41, 42 | eqtrid 2782 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = 𝐴) |
| 44 | 37, 43 | eqtrd 2770 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘(2nd ‘(𝐴∈𝑔𝐵))) = 𝐴) |
| 45 | 44 | fveq2d 6880 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) = (𝑆‘𝐴)) |
| 46 | 36 | fveq2d 6880 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(2nd ‘(𝐴∈𝑔𝐵))) = (2nd ‘(2nd
‘〈∅, 〈𝐴, 𝐵〉〉))) |
| 47 | 40 | fveq2i 6879 |
. . . . . . . 8
⊢
(2nd ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = (2nd
‘〈𝐴, 𝐵〉) |
| 48 | | op2ndg 8001 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 49 | 47, 48 | eqtrid 2782 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = 𝐵) |
| 50 | 46, 49 | eqtrd 2770 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(2nd ‘(𝐴∈𝑔𝐵))) = 𝐵) |
| 51 | 50 | fveq2d 6880 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))) = (𝑆‘𝐵)) |
| 52 | 45, 51 | eleq12d 2828 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))) ↔ (𝑆‘𝐴) ∈ (𝑆‘𝐵))) |
| 53 | 52 | adantl 481 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))) ↔ (𝑆‘𝐴) ∈ (𝑆‘𝐵))) |
| 54 | 53 | anbi2d 630 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵))))) ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) |
| 55 | 35, 54 | bitrd 279 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) |