Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sategoelfvb Structured version   Visualization version   GIF version

Theorem sategoelfvb 35387
Description: Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypothesis
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
Assertion
Ref Expression
sategoelfvb ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))

Proof of Theorem sategoelfvb
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sategoelfvb.s . . . . 5 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
2 ovexd 7483 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ V)
3 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
4 opeq1 4897 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
54opeq2d 4904 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨∅, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
65eqeq2d 2751 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
76rexbidv 3185 . . . . . . . . . 10 (𝑎 = 𝐴 → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
87adantl 481 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑎 = 𝐴) → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
9 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
10 opeq2 4898 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1110opeq2d 4904 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨∅, ⟨𝐴, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
1211eqeq2d 2751 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
1312adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑏 = 𝐵) → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
14 eqidd 2741 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
159, 13, 14rspcedvd 3637 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
163, 8, 15rspcedvd 3637 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
17 goel 35315 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
18 goel 35315 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑔𝑏) = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
1917, 18eqeqan12d 2754 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
20192rexbidva 3226 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
2116, 20mpbird 257 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏))
22 eqeq1 2744 . . . . . . . . 9 (𝑥 = (𝐴𝑔𝐵) → (𝑥 = (𝑎𝑔𝑏) ↔ (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
23222rexbidv 3228 . . . . . . . 8 (𝑥 = (𝐴𝑔𝐵) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
24 fmla0 35350 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏)}
2523, 24elrab2 3711 . . . . . . 7 ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ((𝐴𝑔𝐵) ∈ V ∧ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
262, 21, 25sylanbrc 582 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ (Fmla‘∅))
27 satefvfmla0 35386 . . . . . 6 ((𝑀𝑉 ∧ (𝐴𝑔𝐵) ∈ (Fmla‘∅)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
2826, 27sylan2 592 . . . . 5 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
291, 28eqtrid 2792 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐸 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
3029eleq2d 2830 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))}))
31 fveq1 6919 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))))
32 fveq1 6919 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))
3331, 32eleq12d 2838 . . . 4 (𝑎 = 𝑆 → ((𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3433elrab 3708 . . 3 (𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))} ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3530, 34bitrdi 287 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))))
3617fveq2d 6924 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(𝐴𝑔𝐵)) = (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩))
3736fveq2d 6924 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
38 0ex 5325 . . . . . . . . . 10 ∅ ∈ V
39 opex 5484 . . . . . . . . . 10 𝐴, 𝐵⟩ ∈ V
4038, 39op2nd 8039 . . . . . . . . 9 (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩) = ⟨𝐴, 𝐵
4140fveq2i 6923 . . . . . . . 8 (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (1st ‘⟨𝐴, 𝐵⟩)
42 op1stg 8042 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4341, 42eqtrid 2792 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐴)
4437, 43eqtrd 2780 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐴)
4544fveq2d 6924 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐴))
4636fveq2d 6924 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
4740fveq2i 6923 . . . . . . . 8 (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (2nd ‘⟨𝐴, 𝐵⟩)
48 op2ndg 8043 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4947, 48eqtrid 2792 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐵)
5046, 49eqtrd 2780 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐵)
5150fveq2d 6924 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐵))
5245, 51eleq12d 2838 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5352adantl 481 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5453anbi2d 629 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))) ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5535, 54bitrd 279 1 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  c0 4352  cop 4654  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  2nd c2nd 8029  m cmap 8884  𝑔cgoe 35301  Fmlacfmla 35305   Sat csate 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313
This theorem is referenced by:  sategoelfv  35388  ex-sategoelel  35389  ex-sategoelelomsuc  35394  ex-sategoelel12  35395
  Copyright terms: Public domain W3C validator