Step | Hyp | Ref
| Expression |
1 | | sategoelfvb.s |
. . . . 5
⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) |
2 | | ovexd 7303 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴∈𝑔𝐵) ∈ V) |
3 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈
ω) |
4 | | opeq1 4809 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) |
5 | 4 | opeq2d 4816 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → 〈∅, 〈𝑎, 𝑏〉〉 = 〈∅, 〈𝐴, 𝑏〉〉) |
6 | 5 | eqeq2d 2750 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉 ↔ 〈∅,
〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉)) |
7 | 6 | rexbidv 3227 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉 ↔ ∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉)) |
8 | 7 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑎 = 𝐴) → (∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉 ↔ ∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉)) |
9 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈
ω) |
10 | | opeq2 4810 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) |
11 | 10 | opeq2d 4816 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 → 〈∅, 〈𝐴, 𝑏〉〉 = 〈∅, 〈𝐴, 𝐵〉〉) |
12 | 11 | eqeq2d 2750 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → (〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉 ↔ 〈∅,
〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝐵〉〉)) |
13 | 12 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑏 = 𝐵) → (〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝑏〉〉 ↔ 〈∅,
〈𝐴, 𝐵〉〉 = 〈∅, 〈𝐴, 𝐵〉〉)) |
14 | | eqidd 2740 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
〈∅, 〈𝐴,
𝐵〉〉 =
〈∅, 〈𝐴,
𝐵〉〉) |
15 | 9, 13, 14 | rspcedvd 3563 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
∃𝑏 ∈ ω
〈∅, 〈𝐴,
𝐵〉〉 =
〈∅, 〈𝐴,
𝑏〉〉) |
16 | 3, 8, 15 | rspcedvd 3563 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
∃𝑎 ∈ ω
∃𝑏 ∈ ω
〈∅, 〈𝐴,
𝐵〉〉 =
〈∅, 〈𝑎,
𝑏〉〉) |
17 | | goel 33288 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴∈𝑔𝐵) = 〈∅, 〈𝐴, 𝐵〉〉) |
18 | | goel 33288 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎∈𝑔𝑏) = 〈∅, 〈𝑎, 𝑏〉〉) |
19 | 17, 18 | eqeqan12d 2753 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏) ↔ 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉)) |
20 | 19 | 2rexbidva 3229 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑎 ∈ ω
∃𝑏 ∈ ω
(𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 〈∅, 〈𝐴, 𝐵〉〉 = 〈∅, 〈𝑎, 𝑏〉〉)) |
21 | 16, 20 | mpbird 256 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
∃𝑎 ∈ ω
∃𝑏 ∈ ω
(𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏)) |
22 | | eqeq1 2743 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴∈𝑔𝐵) → (𝑥 = (𝑎∈𝑔𝑏) ↔ (𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏))) |
23 | 22 | 2rexbidv 3230 |
. . . . . . . 8
⊢ (𝑥 = (𝐴∈𝑔𝐵) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎∈𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏))) |
24 | | fmla0 33323 |
. . . . . . . 8
⊢
(Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎∈𝑔𝑏)} |
25 | 23, 24 | elrab2 3628 |
. . . . . . 7
⊢ ((𝐴∈𝑔𝐵) ∈ (Fmla‘∅)
↔ ((𝐴∈𝑔𝐵) ∈ V ∧ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴∈𝑔𝐵) = (𝑎∈𝑔𝑏))) |
26 | 2, 21, 25 | sylanbrc 582 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴∈𝑔𝐵) ∈
(Fmla‘∅)) |
27 | | satefvfmla0 33359 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴∈𝑔𝐵) ∈ (Fmla‘∅)) → (𝑀 Sat∈ (𝐴∈𝑔𝐵)) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))}) |
28 | 26, 27 | sylan2 592 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑀 Sat∈ (𝐴∈𝑔𝐵)) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))}) |
29 | 1, 28 | eqtrid 2791 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐸 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))}) |
30 | 29 | eleq2d 2825 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))})) |
31 | | fveq1 6767 |
. . . . 5
⊢ (𝑎 = 𝑆 → (𝑎‘(1st ‘(2nd
‘(𝐴∈𝑔𝐵)))) = (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵))))) |
32 | | fveq1 6767 |
. . . . 5
⊢ (𝑎 = 𝑆 → (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵)))) = (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵))))) |
33 | 31, 32 | eleq12d 2834 |
. . . 4
⊢ (𝑎 = 𝑆 → ((𝑎‘(1st ‘(2nd
‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵)))) ↔ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))))) |
34 | 33 | elrab 3625 |
. . 3
⊢ (𝑆 ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd
‘(𝐴∈𝑔𝐵))))} ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))))) |
35 | 30, 34 | bitrdi 286 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵))))))) |
36 | 17 | fveq2d 6772 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(𝐴∈𝑔𝐵)) = (2nd ‘〈∅,
〈𝐴, 𝐵〉〉)) |
37 | 36 | fveq2d 6772 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘(2nd ‘(𝐴∈𝑔𝐵))) = (1st ‘(2nd
‘〈∅, 〈𝐴, 𝐵〉〉))) |
38 | | 0ex 5234 |
. . . . . . . . . 10
⊢ ∅
∈ V |
39 | | opex 5381 |
. . . . . . . . . 10
⊢
〈𝐴, 𝐵〉 ∈ V |
40 | 38, 39 | op2nd 7826 |
. . . . . . . . 9
⊢
(2nd ‘〈∅, 〈𝐴, 𝐵〉〉) = 〈𝐴, 𝐵〉 |
41 | 40 | fveq2i 6771 |
. . . . . . . 8
⊢
(1st ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = (1st
‘〈𝐴, 𝐵〉) |
42 | | op1stg 7829 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
43 | 41, 42 | eqtrid 2791 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = 𝐴) |
44 | 37, 43 | eqtrd 2779 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(1st ‘(2nd ‘(𝐴∈𝑔𝐵))) = 𝐴) |
45 | 44 | fveq2d 6772 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) = (𝑆‘𝐴)) |
46 | 36 | fveq2d 6772 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(2nd ‘(𝐴∈𝑔𝐵))) = (2nd ‘(2nd
‘〈∅, 〈𝐴, 𝐵〉〉))) |
47 | 40 | fveq2i 6771 |
. . . . . . . 8
⊢
(2nd ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = (2nd
‘〈𝐴, 𝐵〉) |
48 | | op2ndg 7830 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
49 | 47, 48 | eqtrid 2791 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(2nd ‘〈∅, 〈𝐴, 𝐵〉〉)) = 𝐵) |
50 | 46, 49 | eqtrd 2779 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(2nd ‘(2nd ‘(𝐴∈𝑔𝐵))) = 𝐵) |
51 | 50 | fveq2d 6772 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))) = (𝑆‘𝐵)) |
52 | 45, 51 | eleq12d 2834 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))) ↔ (𝑆‘𝐴) ∈ (𝑆‘𝐵))) |
53 | 52 | adantl 481 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵)))) ↔ (𝑆‘𝐴) ∈ (𝑆‘𝐵))) |
54 | 53 | anbi2d 628 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘(1st
‘(2nd ‘(𝐴∈𝑔𝐵)))) ∈ (𝑆‘(2nd
‘(2nd ‘(𝐴∈𝑔𝐵))))) ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) |
55 | 35, 54 | bitrd 278 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) |