Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sategoelfvb Structured version   Visualization version   GIF version

Theorem sategoelfvb 33360
Description: Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypothesis
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
Assertion
Ref Expression
sategoelfvb ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))

Proof of Theorem sategoelfvb
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sategoelfvb.s . . . . 5 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
2 ovexd 7303 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ V)
3 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
4 opeq1 4809 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
54opeq2d 4816 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨∅, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
65eqeq2d 2750 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
76rexbidv 3227 . . . . . . . . . 10 (𝑎 = 𝐴 → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
87adantl 481 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑎 = 𝐴) → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
9 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
10 opeq2 4810 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1110opeq2d 4816 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨∅, ⟨𝐴, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
1211eqeq2d 2750 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
1312adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑏 = 𝐵) → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
14 eqidd 2740 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
159, 13, 14rspcedvd 3563 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
163, 8, 15rspcedvd 3563 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
17 goel 33288 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
18 goel 33288 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑔𝑏) = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
1917, 18eqeqan12d 2753 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
20192rexbidva 3229 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
2116, 20mpbird 256 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏))
22 eqeq1 2743 . . . . . . . . 9 (𝑥 = (𝐴𝑔𝐵) → (𝑥 = (𝑎𝑔𝑏) ↔ (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
23222rexbidv 3230 . . . . . . . 8 (𝑥 = (𝐴𝑔𝐵) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
24 fmla0 33323 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏)}
2523, 24elrab2 3628 . . . . . . 7 ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ((𝐴𝑔𝐵) ∈ V ∧ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
262, 21, 25sylanbrc 582 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ (Fmla‘∅))
27 satefvfmla0 33359 . . . . . 6 ((𝑀𝑉 ∧ (𝐴𝑔𝐵) ∈ (Fmla‘∅)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
2826, 27sylan2 592 . . . . 5 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
291, 28eqtrid 2791 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐸 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
3029eleq2d 2825 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))}))
31 fveq1 6767 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))))
32 fveq1 6767 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))
3331, 32eleq12d 2834 . . . 4 (𝑎 = 𝑆 → ((𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3433elrab 3625 . . 3 (𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))} ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3530, 34bitrdi 286 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))))
3617fveq2d 6772 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(𝐴𝑔𝐵)) = (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩))
3736fveq2d 6772 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
38 0ex 5234 . . . . . . . . . 10 ∅ ∈ V
39 opex 5381 . . . . . . . . . 10 𝐴, 𝐵⟩ ∈ V
4038, 39op2nd 7826 . . . . . . . . 9 (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩) = ⟨𝐴, 𝐵
4140fveq2i 6771 . . . . . . . 8 (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (1st ‘⟨𝐴, 𝐵⟩)
42 op1stg 7829 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4341, 42eqtrid 2791 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐴)
4437, 43eqtrd 2779 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐴)
4544fveq2d 6772 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐴))
4636fveq2d 6772 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
4740fveq2i 6771 . . . . . . . 8 (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (2nd ‘⟨𝐴, 𝐵⟩)
48 op2ndg 7830 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4947, 48eqtrid 2791 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐵)
5046, 49eqtrd 2779 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐵)
5150fveq2d 6772 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐵))
5245, 51eleq12d 2834 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5352adantl 481 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5453anbi2d 628 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))) ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5535, 54bitrd 278 1 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wrex 3066  {crab 3069  Vcvv 3430  c0 4261  cop 4572  cfv 6430  (class class class)co 7268  ωcom 7700  1st c1st 7815  2nd c2nd 7816  m cmap 8589  𝑔cgoe 33274  Fmlacfmla 33278   Sat csate 33279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-ac2 10203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-ac 9856  df-goel 33281  df-gona 33282  df-goal 33283  df-sat 33284  df-sate 33285  df-fmla 33286
This theorem is referenced by:  sategoelfv  33361  ex-sategoelel  33362  ex-sategoelelomsuc  33367  ex-sategoelel12  33368
  Copyright terms: Public domain W3C validator