Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sategoelfvb Structured version   Visualization version   GIF version

Theorem sategoelfvb 34398
Description: Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypothesis
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat∈ (π΄βˆˆπ‘”π΅))
Assertion
Ref Expression
sategoelfvb ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅))))

Proof of Theorem sategoelfvb
Dummy variables π‘Ž 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sategoelfvb.s . . . . 5 𝐸 = (𝑀 Sat∈ (π΄βˆˆπ‘”π΅))
2 ovexd 7440 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π΄βˆˆπ‘”π΅) ∈ V)
3 simpl 483 . . . . . . . . 9 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ 𝐴 ∈ Ο‰)
4 opeq1 4872 . . . . . . . . . . . . 13 (π‘Ž = 𝐴 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨𝐴, π‘βŸ©)
54opeq2d 4879 . . . . . . . . . . . 12 (π‘Ž = 𝐴 β†’ βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©)
65eqeq2d 2743 . . . . . . . . . . 11 (π‘Ž = 𝐴 β†’ (βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©))
76rexbidv 3178 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ (βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© ↔ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©))
87adantl 482 . . . . . . . . 9 (((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) ∧ π‘Ž = 𝐴) β†’ (βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© ↔ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©))
9 simpr 485 . . . . . . . . . 10 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ 𝐡 ∈ Ο‰)
10 opeq2 4873 . . . . . . . . . . . . 13 (𝑏 = 𝐡 β†’ ⟨𝐴, π‘βŸ© = ⟨𝐴, 𝐡⟩)
1110opeq2d 4879 . . . . . . . . . . . 12 (𝑏 = 𝐡 β†’ βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ© = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)
1211eqeq2d 2743 . . . . . . . . . . 11 (𝑏 = 𝐡 β†’ (βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ© ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩))
1312adantl 482 . . . . . . . . . 10 (((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) ∧ 𝑏 = 𝐡) β†’ (βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ© ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩))
14 eqidd 2733 . . . . . . . . . 10 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)
159, 13, 14rspcedvd 3614 . . . . . . . . 9 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©)
163, 8, 15rspcedvd 3614 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©)
17 goel 34326 . . . . . . . . . 10 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π΄βˆˆπ‘”π΅) = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)
18 goel 34326 . . . . . . . . . 10 ((π‘Ž ∈ Ο‰ ∧ 𝑏 ∈ Ο‰) β†’ (π‘Žβˆˆπ‘”π‘) = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©)
1917, 18eqeqan12d 2746 . . . . . . . . 9 (((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) ∧ (π‘Ž ∈ Ο‰ ∧ 𝑏 ∈ Ο‰)) β†’ ((π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘) ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©))
20192rexbidva 3217 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘) ↔ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©))
2116, 20mpbird 256 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘))
22 eqeq1 2736 . . . . . . . . 9 (π‘₯ = (π΄βˆˆπ‘”π΅) β†’ (π‘₯ = (π‘Žβˆˆπ‘”π‘) ↔ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘)))
23222rexbidv 3219 . . . . . . . 8 (π‘₯ = (π΄βˆˆπ‘”π΅) β†’ (βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ π‘₯ = (π‘Žβˆˆπ‘”π‘) ↔ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘)))
24 fmla0 34361 . . . . . . . 8 (Fmlaβ€˜βˆ…) = {π‘₯ ∈ V ∣ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ π‘₯ = (π‘Žβˆˆπ‘”π‘)}
2523, 24elrab2 3685 . . . . . . 7 ((π΄βˆˆπ‘”π΅) ∈ (Fmlaβ€˜βˆ…) ↔ ((π΄βˆˆπ‘”π΅) ∈ V ∧ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘)))
262, 21, 25sylanbrc 583 . . . . . 6 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π΄βˆˆπ‘”π΅) ∈ (Fmlaβ€˜βˆ…))
27 satefvfmla0 34397 . . . . . 6 ((𝑀 ∈ 𝑉 ∧ (π΄βˆˆπ‘”π΅) ∈ (Fmlaβ€˜βˆ…)) β†’ (𝑀 Sat∈ (π΄βˆˆπ‘”π΅)) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))})
2826, 27sylan2 593 . . . . 5 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑀 Sat∈ (π΄βˆˆπ‘”π΅)) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))})
291, 28eqtrid 2784 . . . 4 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ 𝐸 = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))})
3029eleq2d 2819 . . 3 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))}))
31 fveq1 6887 . . . . 5 (π‘Ž = 𝑆 β†’ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))))
32 fveq1 6887 . . . . 5 (π‘Ž = 𝑆 β†’ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))))
3331, 32eleq12d 2827 . . . 4 (π‘Ž = 𝑆 β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ↔ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))))
3433elrab 3682 . . 3 (𝑆 ∈ {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))} ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))))
3530, 34bitrdi 286 . 2 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))))))
3617fveq2d 6892 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(π΄βˆˆπ‘”π΅)) = (2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩))
3736fveq2d 6892 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = (1st β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)))
38 0ex 5306 . . . . . . . . . 10 βˆ… ∈ V
39 opex 5463 . . . . . . . . . 10 ⟨𝐴, 𝐡⟩ ∈ V
4038, 39op2nd 7980 . . . . . . . . 9 (2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩) = ⟨𝐴, 𝐡⟩
4140fveq2i 6891 . . . . . . . 8 (1st β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = (1st β€˜βŸ¨π΄, 𝐡⟩)
42 op1stg 7983 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜βŸ¨π΄, 𝐡⟩) = 𝐴)
4341, 42eqtrid 2784 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = 𝐴)
4437, 43eqtrd 2772 . . . . . 6 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = 𝐴)
4544fveq2d 6892 . . . . 5 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜π΄))
4636fveq2d 6892 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = (2nd β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)))
4740fveq2i 6891 . . . . . . . 8 (2nd β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = (2nd β€˜βŸ¨π΄, 𝐡⟩)
48 op2ndg 7984 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜βŸ¨π΄, 𝐡⟩) = 𝐡)
4947, 48eqtrid 2784 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = 𝐡)
5046, 49eqtrd 2772 . . . . . 6 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = 𝐡)
5150fveq2d 6892 . . . . 5 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜π΅))
5245, 51eleq12d 2827 . . . 4 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ ((π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ↔ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅)))
5352adantl 482 . . 3 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ ((π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ↔ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅)))
5453anbi2d 629 . 2 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ ((𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))) ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅))))
5535, 54bitrd 278 1 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  Vcvv 3474  βˆ…c0 4321  βŸ¨cop 4633  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851  1st c1st 7969  2nd c2nd 7970   ↑m cmap 8816  βˆˆπ‘”cgoe 34312  Fmlacfmla 34316   Sat∈ csate 34317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-ac 10107  df-goel 34319  df-gona 34320  df-goal 34321  df-sat 34322  df-sate 34323  df-fmla 34324
This theorem is referenced by:  sategoelfv  34399  ex-sategoelel  34400  ex-sategoelelomsuc  34405  ex-sategoelel12  34406
  Copyright terms: Public domain W3C validator