Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sategoelfvb Structured version   Visualization version   GIF version

Theorem sategoelfvb 34410
Description: Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypothesis
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat∈ (π΄βˆˆπ‘”π΅))
Assertion
Ref Expression
sategoelfvb ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅))))

Proof of Theorem sategoelfvb
Dummy variables π‘Ž 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sategoelfvb.s . . . . 5 𝐸 = (𝑀 Sat∈ (π΄βˆˆπ‘”π΅))
2 ovexd 7444 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π΄βˆˆπ‘”π΅) ∈ V)
3 simpl 484 . . . . . . . . 9 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ 𝐴 ∈ Ο‰)
4 opeq1 4874 . . . . . . . . . . . . 13 (π‘Ž = 𝐴 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨𝐴, π‘βŸ©)
54opeq2d 4881 . . . . . . . . . . . 12 (π‘Ž = 𝐴 β†’ βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©)
65eqeq2d 2744 . . . . . . . . . . 11 (π‘Ž = 𝐴 β†’ (βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©))
76rexbidv 3179 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ (βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© ↔ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©))
87adantl 483 . . . . . . . . 9 (((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) ∧ π‘Ž = 𝐴) β†’ (βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ© ↔ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©))
9 simpr 486 . . . . . . . . . 10 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ 𝐡 ∈ Ο‰)
10 opeq2 4875 . . . . . . . . . . . . 13 (𝑏 = 𝐡 β†’ ⟨𝐴, π‘βŸ© = ⟨𝐴, 𝐡⟩)
1110opeq2d 4881 . . . . . . . . . . . 12 (𝑏 = 𝐡 β†’ βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ© = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)
1211eqeq2d 2744 . . . . . . . . . . 11 (𝑏 = 𝐡 β†’ (βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ© ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩))
1312adantl 483 . . . . . . . . . 10 (((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) ∧ 𝑏 = 𝐡) β†’ (βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ© ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩))
14 eqidd 2734 . . . . . . . . . 10 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)
159, 13, 14rspcedvd 3615 . . . . . . . . 9 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, ⟨𝐴, π‘βŸ©βŸ©)
163, 8, 15rspcedvd 3615 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©)
17 goel 34338 . . . . . . . . . 10 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π΄βˆˆπ‘”π΅) = βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)
18 goel 34338 . . . . . . . . . 10 ((π‘Ž ∈ Ο‰ ∧ 𝑏 ∈ Ο‰) β†’ (π‘Žβˆˆπ‘”π‘) = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©)
1917, 18eqeqan12d 2747 . . . . . . . . 9 (((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) ∧ (π‘Ž ∈ Ο‰ ∧ 𝑏 ∈ Ο‰)) β†’ ((π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘) ↔ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©))
20192rexbidva 3218 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘) ↔ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩ = βŸ¨βˆ…, βŸ¨π‘Ž, π‘βŸ©βŸ©))
2116, 20mpbird 257 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘))
22 eqeq1 2737 . . . . . . . . 9 (π‘₯ = (π΄βˆˆπ‘”π΅) β†’ (π‘₯ = (π‘Žβˆˆπ‘”π‘) ↔ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘)))
23222rexbidv 3220 . . . . . . . 8 (π‘₯ = (π΄βˆˆπ‘”π΅) β†’ (βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ π‘₯ = (π‘Žβˆˆπ‘”π‘) ↔ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘)))
24 fmla0 34373 . . . . . . . 8 (Fmlaβ€˜βˆ…) = {π‘₯ ∈ V ∣ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ π‘₯ = (π‘Žβˆˆπ‘”π‘)}
2523, 24elrab2 3687 . . . . . . 7 ((π΄βˆˆπ‘”π΅) ∈ (Fmlaβ€˜βˆ…) ↔ ((π΄βˆˆπ‘”π΅) ∈ V ∧ βˆƒπ‘Ž ∈ Ο‰ βˆƒπ‘ ∈ Ο‰ (π΄βˆˆπ‘”π΅) = (π‘Žβˆˆπ‘”π‘)))
262, 21, 25sylanbrc 584 . . . . . 6 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π΄βˆˆπ‘”π΅) ∈ (Fmlaβ€˜βˆ…))
27 satefvfmla0 34409 . . . . . 6 ((𝑀 ∈ 𝑉 ∧ (π΄βˆˆπ‘”π΅) ∈ (Fmlaβ€˜βˆ…)) β†’ (𝑀 Sat∈ (π΄βˆˆπ‘”π΅)) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))})
2826, 27sylan2 594 . . . . 5 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑀 Sat∈ (π΄βˆˆπ‘”π΅)) = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))})
291, 28eqtrid 2785 . . . 4 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ 𝐸 = {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))})
3029eleq2d 2820 . . 3 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))}))
31 fveq1 6891 . . . . 5 (π‘Ž = 𝑆 β†’ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))))
32 fveq1 6891 . . . . 5 (π‘Ž = 𝑆 β†’ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))))
3331, 32eleq12d 2828 . . . 4 (π‘Ž = 𝑆 β†’ ((π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ↔ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))))
3433elrab 3684 . . 3 (𝑆 ∈ {π‘Ž ∈ (𝑀 ↑m Ο‰) ∣ (π‘Žβ€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘Žβ€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))} ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))))
3530, 34bitrdi 287 . 2 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))))))
3617fveq2d 6896 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(π΄βˆˆπ‘”π΅)) = (2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩))
3736fveq2d 6896 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = (1st β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)))
38 0ex 5308 . . . . . . . . . 10 βˆ… ∈ V
39 opex 5465 . . . . . . . . . 10 ⟨𝐴, 𝐡⟩ ∈ V
4038, 39op2nd 7984 . . . . . . . . 9 (2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩) = ⟨𝐴, 𝐡⟩
4140fveq2i 6895 . . . . . . . 8 (1st β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = (1st β€˜βŸ¨π΄, 𝐡⟩)
42 op1stg 7987 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜βŸ¨π΄, 𝐡⟩) = 𝐴)
4341, 42eqtrid 2785 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = 𝐴)
4437, 43eqtrd 2773 . . . . . 6 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = 𝐴)
4544fveq2d 6896 . . . . 5 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜π΄))
4636fveq2d 6896 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = (2nd β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)))
4740fveq2i 6895 . . . . . . . 8 (2nd β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = (2nd β€˜βŸ¨π΄, 𝐡⟩)
48 op2ndg 7988 . . . . . . . 8 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜βŸ¨π΄, 𝐡⟩) = 𝐡)
4947, 48eqtrid 2785 . . . . . . 7 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(2nd β€˜βŸ¨βˆ…, ⟨𝐴, 𝐡⟩⟩)) = 𝐡)
5046, 49eqtrd 2773 . . . . . 6 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))) = 𝐡)
5150fveq2d 6896 . . . . 5 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) = (π‘†β€˜π΅))
5245, 51eleq12d 2828 . . . 4 ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ ((π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ↔ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅)))
5352adantl 483 . . 3 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ ((π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ↔ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅)))
5453anbi2d 630 . 2 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ ((𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜(1st β€˜(2nd β€˜(π΄βˆˆπ‘”π΅)))) ∈ (π‘†β€˜(2nd β€˜(2nd β€˜(π΄βˆˆπ‘”π΅))))) ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅))))
5535, 54bitrd 279 1 ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m Ο‰) ∧ (π‘†β€˜π΄) ∈ (π‘†β€˜π΅))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433  Vcvv 3475  βˆ…c0 4323  βŸ¨cop 4635  β€˜cfv 6544  (class class class)co 7409  Ο‰com 7855  1st c1st 7973  2nd c2nd 7974   ↑m cmap 8820  βˆˆπ‘”cgoe 34324  Fmlacfmla 34328   Sat∈ csate 34329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-ac2 10458
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-ac 10111  df-goel 34331  df-gona 34332  df-goal 34333  df-sat 34334  df-sate 34335  df-fmla 34336
This theorem is referenced by:  sategoelfv  34411  ex-sategoelel  34412  ex-sategoelelomsuc  34417  ex-sategoelel12  34418
  Copyright terms: Public domain W3C validator