Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sategoelfvb Structured version   Visualization version   GIF version

Theorem sategoelfvb 35413
Description: Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypothesis
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
Assertion
Ref Expression
sategoelfvb ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))

Proof of Theorem sategoelfvb
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sategoelfvb.s . . . . 5 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
2 ovexd 7425 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ V)
3 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
4 opeq1 4840 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
54opeq2d 4847 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨∅, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
65eqeq2d 2741 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
76rexbidv 3158 . . . . . . . . . 10 (𝑎 = 𝐴 → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
87adantl 481 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑎 = 𝐴) → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
9 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
10 opeq2 4841 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1110opeq2d 4847 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨∅, ⟨𝐴, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
1211eqeq2d 2741 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
1312adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑏 = 𝐵) → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
14 eqidd 2731 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
159, 13, 14rspcedvd 3593 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
163, 8, 15rspcedvd 3593 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
17 goel 35341 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
18 goel 35341 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑔𝑏) = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
1917, 18eqeqan12d 2744 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
20192rexbidva 3201 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
2116, 20mpbird 257 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏))
22 eqeq1 2734 . . . . . . . . 9 (𝑥 = (𝐴𝑔𝐵) → (𝑥 = (𝑎𝑔𝑏) ↔ (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
23222rexbidv 3203 . . . . . . . 8 (𝑥 = (𝐴𝑔𝐵) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
24 fmla0 35376 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏)}
2523, 24elrab2 3665 . . . . . . 7 ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ((𝐴𝑔𝐵) ∈ V ∧ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
262, 21, 25sylanbrc 583 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ (Fmla‘∅))
27 satefvfmla0 35412 . . . . . 6 ((𝑀𝑉 ∧ (𝐴𝑔𝐵) ∈ (Fmla‘∅)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
2826, 27sylan2 593 . . . . 5 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
291, 28eqtrid 2777 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐸 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
3029eleq2d 2815 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))}))
31 fveq1 6860 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))))
32 fveq1 6860 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))
3331, 32eleq12d 2823 . . . 4 (𝑎 = 𝑆 → ((𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3433elrab 3662 . . 3 (𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))} ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3530, 34bitrdi 287 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))))
3617fveq2d 6865 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(𝐴𝑔𝐵)) = (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩))
3736fveq2d 6865 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
38 0ex 5265 . . . . . . . . . 10 ∅ ∈ V
39 opex 5427 . . . . . . . . . 10 𝐴, 𝐵⟩ ∈ V
4038, 39op2nd 7980 . . . . . . . . 9 (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩) = ⟨𝐴, 𝐵
4140fveq2i 6864 . . . . . . . 8 (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (1st ‘⟨𝐴, 𝐵⟩)
42 op1stg 7983 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4341, 42eqtrid 2777 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐴)
4437, 43eqtrd 2765 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐴)
4544fveq2d 6865 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐴))
4636fveq2d 6865 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
4740fveq2i 6864 . . . . . . . 8 (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (2nd ‘⟨𝐴, 𝐵⟩)
48 op2ndg 7984 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4947, 48eqtrid 2777 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐵)
5046, 49eqtrd 2765 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐵)
5150fveq2d 6865 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐵))
5245, 51eleq12d 2823 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5352adantl 481 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5453anbi2d 630 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))) ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5535, 54bitrd 279 1 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  c0 4299  cop 4598  cfv 6514  (class class class)co 7390  ωcom 7845  1st c1st 7969  2nd c2nd 7970  m cmap 8802  𝑔cgoe 35327  Fmlacfmla 35331   Sat csate 35332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-ac 10076  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-sate 35338  df-fmla 35339
This theorem is referenced by:  sategoelfv  35414  ex-sategoelel  35415  ex-sategoelelomsuc  35420  ex-sategoelel12  35421
  Copyright terms: Public domain W3C validator