Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sategoelfvb Structured version   Visualization version   GIF version

Theorem sategoelfvb 35441
Description: Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypothesis
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
Assertion
Ref Expression
sategoelfvb ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))

Proof of Theorem sategoelfvb
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sategoelfvb.s . . . . 5 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
2 ovexd 7440 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ V)
3 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
4 opeq1 4849 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
54opeq2d 4856 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨∅, ⟨𝑎, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
65eqeq2d 2746 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
76rexbidv 3164 . . . . . . . . . 10 (𝑎 = 𝐴 → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
87adantl 481 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑎 = 𝐴) → (∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩ ↔ ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩))
9 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
10 opeq2 4850 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1110opeq2d 4856 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨∅, ⟨𝐴, 𝑏⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
1211eqeq2d 2746 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
1312adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑏 = 𝐵) → (⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩ ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩))
14 eqidd 2736 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
159, 13, 14rspcedvd 3603 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝐴, 𝑏⟩⟩)
163, 8, 15rspcedvd 3603 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
17 goel 35369 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) = ⟨∅, ⟨𝐴, 𝐵⟩⟩)
18 goel 35369 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑔𝑏) = ⟨∅, ⟨𝑎, 𝑏⟩⟩)
1917, 18eqeqan12d 2749 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
20192rexbidva 3204 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω ⟨∅, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑎, 𝑏⟩⟩))
2116, 20mpbird 257 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏))
22 eqeq1 2739 . . . . . . . . 9 (𝑥 = (𝐴𝑔𝐵) → (𝑥 = (𝑎𝑔𝑏) ↔ (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
23222rexbidv 3206 . . . . . . . 8 (𝑥 = (𝐴𝑔𝐵) → (∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏) ↔ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
24 fmla0 35404 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑎 ∈ ω ∃𝑏 ∈ ω 𝑥 = (𝑎𝑔𝑏)}
2523, 24elrab2 3674 . . . . . . 7 ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ((𝐴𝑔𝐵) ∈ V ∧ ∃𝑎 ∈ ω ∃𝑏 ∈ ω (𝐴𝑔𝐵) = (𝑎𝑔𝑏)))
262, 21, 25sylanbrc 583 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑔𝐵) ∈ (Fmla‘∅))
27 satefvfmla0 35440 . . . . . 6 ((𝑀𝑉 ∧ (𝐴𝑔𝐵) ∈ (Fmla‘∅)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
2826, 27sylan2 593 . . . . 5 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑀 Sat (𝐴𝑔𝐵)) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
291, 28eqtrid 2782 . . . 4 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐸 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))})
3029eleq2d 2820 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))}))
31 fveq1 6875 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))))
32 fveq1 6875 . . . . 5 (𝑎 = 𝑆 → (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))
3331, 32eleq12d 2828 . . . 4 (𝑎 = 𝑆 → ((𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3433elrab 3671 . . 3 (𝑆 ∈ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))} ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))))
3530, 34bitrdi 287 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))))))
3617fveq2d 6880 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(𝐴𝑔𝐵)) = (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩))
3736fveq2d 6880 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
38 0ex 5277 . . . . . . . . . 10 ∅ ∈ V
39 opex 5439 . . . . . . . . . 10 𝐴, 𝐵⟩ ∈ V
4038, 39op2nd 7997 . . . . . . . . 9 (2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩) = ⟨𝐴, 𝐵
4140fveq2i 6879 . . . . . . . 8 (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (1st ‘⟨𝐴, 𝐵⟩)
42 op1stg 8000 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4341, 42eqtrid 2782 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐴)
4437, 43eqtrd 2770 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (1st ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐴)
4544fveq2d 6880 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐴))
4636fveq2d 6880 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)))
4740fveq2i 6879 . . . . . . . 8 (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = (2nd ‘⟨𝐴, 𝐵⟩)
48 op2ndg 8001 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4947, 48eqtrid 2782 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘⟨∅, ⟨𝐴, 𝐵⟩⟩)) = 𝐵)
5046, 49eqtrd 2770 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (2nd ‘(2nd ‘(𝐴𝑔𝐵))) = 𝐵)
5150fveq2d 6880 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) = (𝑆𝐵))
5245, 51eleq12d 2828 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5352adantl 481 . . 3 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵)))) ↔ (𝑆𝐴) ∈ (𝑆𝐵)))
5453anbi2d 630 . 2 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑆 ∈ (𝑀m ω) ∧ (𝑆‘(1st ‘(2nd ‘(𝐴𝑔𝐵)))) ∈ (𝑆‘(2nd ‘(2nd ‘(𝐴𝑔𝐵))))) ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5535, 54bitrd 279 1 ((𝑀𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459  c0 4308  cop 4607  cfv 6531  (class class class)co 7405  ωcom 7861  1st c1st 7986  2nd c2nd 7987  m cmap 8840  𝑔cgoe 35355  Fmlacfmla 35359   Sat csate 35360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-ac 10130  df-goel 35362  df-gona 35363  df-goal 35364  df-sat 35365  df-sate 35366  df-fmla 35367
This theorem is referenced by:  sategoelfv  35442  ex-sategoelel  35443  ex-sategoelelomsuc  35448  ex-sategoelel12  35449
  Copyright terms: Public domain W3C validator