![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline2 | Structured version Visualization version GIF version |
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
isline2.j | ⊢ ∨ = (join‘𝐾) |
isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
isline2 | ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | isline2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | isline2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | isline2.n | . . 3 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | 1, 2, 3, 4 | isline 35809 | . 2 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
6 | simpl 476 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) | |
7 | eqid 2825 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 7, 3 | atbase 35359 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
9 | 8 | ad2antrl 719 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ (Base‘𝐾)) |
10 | 7, 3 | atbase 35359 | . . . . . . . 8 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
11 | 10 | ad2antll 720 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ (Base‘𝐾)) |
12 | 7, 2 | latjcl 17411 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
13 | 6, 9, 11, 12 | syl3anc 1494 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
14 | isline2.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
15 | 7, 1, 3, 14 | pmapval 35827 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
16 | 13, 15 | syldan 585 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
17 | 16 | eqeq2d 2835 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑋 = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)})) |
18 | 17 | anbi2d 622 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
19 | 18 | 2rexbidva 3266 | . 2 ⊢ (𝐾 ∈ Lat → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
20 | 5, 19 | bitr4d 274 | 1 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∃wrex 3118 {crab 3121 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 lecple 16319 joincjn 17304 Latclat 17405 Atomscatm 35333 Linesclines 35564 pmapcpmap 35567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-lat 17406 df-ats 35337 df-lines 35571 df-pmap 35574 |
This theorem is referenced by: isline3 35846 lncvrelatN 35851 linepsubclN 36021 |
Copyright terms: Public domain | W3C validator |