Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline2 | Structured version Visualization version GIF version |
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
isline2.j | ⊢ ∨ = (join‘𝐾) |
isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
isline2 | ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | isline2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | isline2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | isline2.n | . . 3 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | 1, 2, 3, 4 | isline 37795 | . 2 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
6 | simpl 484 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) | |
7 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 7, 3 | atbase 37345 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
9 | 8 | ad2antrl 726 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ (Base‘𝐾)) |
10 | 7, 3 | atbase 37345 | . . . . . . . 8 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
11 | 10 | ad2antll 727 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ (Base‘𝐾)) |
12 | 7, 2 | latjcl 18202 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
13 | 6, 9, 11, 12 | syl3anc 1371 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
14 | isline2.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
15 | 7, 1, 3, 14 | pmapval 37813 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
16 | 13, 15 | syldan 592 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
17 | 16 | eqeq2d 2747 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑋 = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)})) |
18 | 17 | anbi2d 630 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
19 | 18 | 2rexbidva 3208 | . 2 ⊢ (𝐾 ∈ Lat → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
20 | 5, 19 | bitr4d 282 | 1 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∃wrex 3071 {crab 3284 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 lecple 17014 joincjn 18074 Latclat 18194 Atomscatm 37319 Linesclines 37550 pmapcpmap 37553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-lat 18195 df-ats 37323 df-lines 37557 df-pmap 37560 |
This theorem is referenced by: isline3 37832 lncvrelatN 37837 linepsubclN 38007 |
Copyright terms: Public domain | W3C validator |