![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline2 | Structured version Visualization version GIF version |
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
isline2.j | ⊢ ∨ = (join‘𝐾) |
isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
isline2 | ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | isline2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | isline2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | isline2.n | . . 3 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | 1, 2, 3, 4 | isline 39722 | . 2 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
6 | simpl 482 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) | |
7 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 7, 3 | atbase 39271 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
9 | 8 | ad2antrl 728 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ (Base‘𝐾)) |
10 | 7, 3 | atbase 39271 | . . . . . . . 8 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
11 | 10 | ad2antll 729 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ (Base‘𝐾)) |
12 | 7, 2 | latjcl 18497 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
13 | 6, 9, 11, 12 | syl3anc 1370 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
14 | isline2.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
15 | 7, 1, 3, 14 | pmapval 39740 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
16 | 13, 15 | syldan 591 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
17 | 16 | eqeq2d 2746 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑋 = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)})) |
18 | 17 | anbi2d 630 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
19 | 18 | 2rexbidva 3218 | . 2 ⊢ (𝐾 ∈ Lat → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
20 | 5, 19 | bitr4d 282 | 1 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 joincjn 18369 Latclat 18489 Atomscatm 39245 Linesclines 39477 pmapcpmap 39480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-lat 18490 df-ats 39249 df-lines 39484 df-pmap 39487 |
This theorem is referenced by: isline3 39759 lncvrelatN 39764 linepsubclN 39934 |
Copyright terms: Public domain | W3C validator |