Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline2 Structured version   Visualization version   GIF version

Theorem isline2 39775
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
isline2.j = (join‘𝐾)
isline2.a 𝐴 = (Atoms‘𝐾)
isline2.n 𝑁 = (Lines‘𝐾)
isline2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
isline2 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑀(𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem isline2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (le‘𝐾) = (le‘𝐾)
2 isline2.j . . 3 = (join‘𝐾)
3 isline2.a . . 3 𝐴 = (Atoms‘𝐾)
4 isline2.n . . 3 𝑁 = (Lines‘𝐾)
51, 2, 3, 4isline 39740 . 2 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})))
6 simpl 482 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ Lat)
7 eqid 2730 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
87, 3atbase 39289 . . . . . . . 8 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
98ad2antrl 728 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → 𝑝 ∈ (Base‘𝐾))
107, 3atbase 39289 . . . . . . . 8 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
1110ad2antll 729 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → 𝑞 ∈ (Base‘𝐾))
127, 2latjcl 18405 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 𝑞) ∈ (Base‘𝐾))
136, 9, 11, 12syl3anc 1373 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → (𝑝 𝑞) ∈ (Base‘𝐾))
14 isline2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
157, 1, 3, 14pmapval 39758 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾)) → (𝑀‘(𝑝 𝑞)) = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})
1613, 15syldan 591 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → (𝑀‘(𝑝 𝑞)) = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})
1716eqeq2d 2741 . . . 4 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → (𝑋 = (𝑀‘(𝑝 𝑞)) ↔ 𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)}))
1817anbi2d 630 . . 3 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → ((𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞))) ↔ (𝑝𝑞𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})))
19182rexbidva 3201 . 2 (𝐾 ∈ Lat → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞))) ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})))
205, 19bitr4d 282 1 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  Latclat 18397  Atomscatm 39263  Linesclines 39495  pmapcpmap 39498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398  df-ats 39267  df-lines 39502  df-pmap 39505
This theorem is referenced by:  isline3  39777  lncvrelatN  39782  linepsubclN  39952
  Copyright terms: Public domain W3C validator