![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline2 | Structured version Visualization version GIF version |
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
isline2.j | ⊢ ∨ = (join‘𝐾) |
isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
isline2 | ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | isline2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | isline2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | isline2.n | . . 3 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | 1, 2, 3, 4 | isline 39696 | . 2 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
6 | simpl 482 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) | |
7 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 7, 3 | atbase 39245 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
9 | 8 | ad2antrl 727 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ (Base‘𝐾)) |
10 | 7, 3 | atbase 39245 | . . . . . . . 8 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
11 | 10 | ad2antll 728 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ (Base‘𝐾)) |
12 | 7, 2 | latjcl 18509 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
13 | 6, 9, 11, 12 | syl3anc 1371 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
14 | isline2.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
15 | 7, 1, 3, 14 | pmapval 39714 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
16 | 13, 15 | syldan 590 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
17 | 16 | eqeq2d 2751 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑋 = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)})) |
18 | 17 | anbi2d 629 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
19 | 18 | 2rexbidva 3226 | . 2 ⊢ (𝐾 ∈ Lat → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
20 | 5, 19 | bitr4d 282 | 1 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 Latclat 18501 Atomscatm 39219 Linesclines 39451 pmapcpmap 39454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 df-ats 39223 df-lines 39458 df-pmap 39461 |
This theorem is referenced by: isline3 39733 lncvrelatN 39738 linepsubclN 39908 |
Copyright terms: Public domain | W3C validator |