Step | Hyp | Ref
| Expression |
1 | | uncom 4083 |
. . . 4
⊢ (𝑋 ∪ 𝑌) = (𝑌 ∪ 𝑋) |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ∪ 𝑌) = (𝑌 ∪ 𝑋)) |
3 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝐾 ∈ Lat) |
4 | | simpl2 1190 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑋 ⊆ 𝐴) |
5 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑞 ∈ 𝑋) |
6 | 4, 5 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑞 ∈ 𝐴) |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | padd0.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 7, 8 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
10 | 6, 9 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑞 ∈ (Base‘𝐾)) |
11 | | simpl3 1191 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑌 ⊆ 𝐴) |
12 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑟 ∈ 𝑌) |
13 | 11, 12 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑟 ∈ 𝐴) |
14 | 7, 8 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ (Base‘𝐾)) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑟 ∈ (Base‘𝐾)) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(join‘𝐾) =
(join‘𝐾) |
17 | 7, 16 | latjcom 18080 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞)) |
18 | 3, 10, 15, 17 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞)) |
19 | 18 | breq2d 5082 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → (𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))) |
20 | 19 | 2rexbidva 3227 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))) |
21 | | rexcom 3281 |
. . . . 5
⊢
(∃𝑞 ∈
𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞) ↔ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)) |
22 | 20, 21 | bitrdi 286 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))) |
23 | 22 | rabbidv 3404 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} = {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}) |
24 | 2, 23 | uneq12d 4094 |
. 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})) |
25 | | eqid 2738 |
. . 3
⊢
(le‘𝐾) =
(le‘𝐾) |
26 | | padd0.p |
. . 3
⊢ + =
(+𝑃‘𝐾) |
27 | 25, 16, 8, 26 | paddval 37739 |
. 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
28 | 25, 16, 8, 26 | paddval 37739 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})) |
29 | 28 | 3com23 1124 |
. 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})) |
30 | 24, 27, 29 | 3eqtr4d 2788 |
1
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |