Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddcom Structured version   Visualization version   GIF version

Theorem paddcom 37513
Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddcom ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem paddcom
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncom 4053 . . . 4 (𝑋𝑌) = (𝑌𝑋)
21a1i 11 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋𝑌) = (𝑌𝑋))
3 simpl1 1193 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝐾 ∈ Lat)
4 simpl2 1194 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑋𝐴)
5 simprl 771 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞𝑋)
64, 5sseldd 3888 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞𝐴)
7 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
8 padd0.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
97, 8atbase 36989 . . . . . . . . 9 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
106, 9syl 17 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞 ∈ (Base‘𝐾))
11 simpl3 1195 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑌𝐴)
12 simprr 773 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟𝑌)
1311, 12sseldd 3888 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟𝐴)
147, 8atbase 36989 . . . . . . . . 9 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟 ∈ (Base‘𝐾))
16 eqid 2736 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
177, 16latjcom 17907 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞))
183, 10, 15, 17syl3anc 1373 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞))
1918breq2d 5051 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → (𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
20192rexbidva 3208 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
21 rexcom 3258 . . . . 5 (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞) ↔ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))
2220, 21bitrdi 290 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
2322rabbidv 3380 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} = {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})
242, 23uneq12d 4064 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
25 eqid 2736 . . 3 (le‘𝐾) = (le‘𝐾)
26 padd0.p . . 3 + = (+𝑃𝐾)
2725, 16, 8, 26paddval 37498 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
2825, 16, 8, 26paddval 37498 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
29283com23 1128 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
3024, 27, 293eqtr4d 2781 1 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wrex 3052  {crab 3055  cun 3851  wss 3853   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  lecple 16756  joincjn 17772  Latclat 17891  Atomscatm 36963  +𝑃cpadd 37495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-lub 17806  df-join 17808  df-lat 17892  df-ats 36967  df-padd 37496
This theorem is referenced by:  paddass  37538  padd12N  37539  pmod2iN  37549  pmodN  37550  pmapjat2  37554
  Copyright terms: Public domain W3C validator