| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | uncom 4158 | . . . 4
⊢ (𝑋 ∪ 𝑌) = (𝑌 ∪ 𝑋) | 
| 2 | 1 | a1i 11 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ∪ 𝑌) = (𝑌 ∪ 𝑋)) | 
| 3 |  | simpl1 1192 | . . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝐾 ∈ Lat) | 
| 4 |  | simpl2 1193 | . . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑋 ⊆ 𝐴) | 
| 5 |  | simprl 771 | . . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑞 ∈ 𝑋) | 
| 6 | 4, 5 | sseldd 3984 | . . . . . . . . 9
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑞 ∈ 𝐴) | 
| 7 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 8 |  | padd0.a | . . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 | 7, 8 | atbase 39290 | . . . . . . . . 9
⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) | 
| 10 | 6, 9 | syl 17 | . . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑞 ∈ (Base‘𝐾)) | 
| 11 |  | simpl3 1194 | . . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑌 ⊆ 𝐴) | 
| 12 |  | simprr 773 | . . . . . . . . . 10
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑟 ∈ 𝑌) | 
| 13 | 11, 12 | sseldd 3984 | . . . . . . . . 9
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑟 ∈ 𝐴) | 
| 14 | 7, 8 | atbase 39290 | . . . . . . . . 9
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ (Base‘𝐾)) | 
| 15 | 13, 14 | syl 17 | . . . . . . . 8
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → 𝑟 ∈ (Base‘𝐾)) | 
| 16 |  | eqid 2737 | . . . . . . . . 9
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 17 | 7, 16 | latjcom 18492 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞)) | 
| 18 | 3, 10, 15, 17 | syl3anc 1373 | . . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞)) | 
| 19 | 18 | breq2d 5155 | . . . . . 6
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) → (𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))) | 
| 20 | 19 | 2rexbidva 3220 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))) | 
| 21 |  | rexcom 3290 | . . . . 5
⊢
(∃𝑞 ∈
𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞) ↔ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)) | 
| 22 | 20, 21 | bitrdi 287 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))) | 
| 23 | 22 | rabbidv 3444 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} = {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}) | 
| 24 | 2, 23 | uneq12d 4169 | . 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})) | 
| 25 |  | eqid 2737 | . . 3
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 26 |  | padd0.p | . . 3
⊢  + =
(+𝑃‘𝐾) | 
| 27 | 25, 16, 8, 26 | paddval 39800 | . 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) | 
| 28 | 25, 16, 8, 26 | paddval 39800 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})) | 
| 29 | 28 | 3com23 1127 | . 2
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑟 ∈ 𝑌 ∃𝑞 ∈ 𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})) | 
| 30 | 24, 27, 29 | 3eqtr4d 2787 | 1
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |