MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwrcl Structured version   Visualization version   GIF version

Theorem arwrcl 18036
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
arwrcl (𝐹𝐴𝐶 ∈ Cat)

Proof of Theorem arwrcl
StepHypRef Expression
1 df-arw 18019 . . 3 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
21dmmptss 6247 . 2 dom Arrow ⊆ Cat
3 elfvdm 6933 . . 3 (𝐹 ∈ (Arrow‘𝐶) → 𝐶 ∈ dom Arrow)
4 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
53, 4eleq2s 2843 . 2 (𝐹𝐴𝐶 ∈ dom Arrow)
62, 5sselid 3974 1 (𝐹𝐴𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   cuni 4909  dom cdm 5678  ran crn 5679  cfv 6549  Catccat 17647  Arrowcarw 18014  Homachoma 18015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fv 6557  df-arw 18019
This theorem is referenced by:  arwhoma  18037  coafval  18056
  Copyright terms: Public domain W3C validator