MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwrcl Structured version   Visualization version   GIF version

Theorem arwrcl 17986
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
arwrcl (𝐹𝐴𝐶 ∈ Cat)

Proof of Theorem arwrcl
StepHypRef Expression
1 df-arw 17969 . . 3 Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
21dmmptss 6202 . 2 dom Arrow ⊆ Cat
3 elfvdm 6877 . . 3 (𝐹 ∈ (Arrow‘𝐶) → 𝐶 ∈ dom Arrow)
4 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
53, 4eleq2s 2846 . 2 (𝐹𝐴𝐶 ∈ dom Arrow)
62, 5sselid 3941 1 (𝐹𝐴𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4867  dom cdm 5631  ran crn 5632  cfv 6499  Catccat 17605  Arrowcarw 17964  Homachoma 17965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fv 6507  df-arw 17969
This theorem is referenced by:  arwhoma  17987  coafval  18006  arweuthinc  49511
  Copyright terms: Public domain W3C validator