MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwrcl Structured version   Visualization version   GIF version

Theorem arwrcl 17994
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
arwrcl.a 𝐴 = (Arrowβ€˜πΆ)
Assertion
Ref Expression
arwrcl (𝐹 ∈ 𝐴 β†’ 𝐢 ∈ Cat)

Proof of Theorem arwrcl
StepHypRef Expression
1 df-arw 17977 . . 3 Arrow = (𝑐 ∈ Cat ↦ βˆͺ ran (Homaβ€˜π‘))
21dmmptss 6241 . 2 dom Arrow βŠ† Cat
3 elfvdm 6929 . . 3 (𝐹 ∈ (Arrowβ€˜πΆ) β†’ 𝐢 ∈ dom Arrow)
4 arwrcl.a . . 3 𝐴 = (Arrowβ€˜πΆ)
53, 4eleq2s 2852 . 2 (𝐹 ∈ 𝐴 β†’ 𝐢 ∈ dom Arrow)
62, 5sselid 3981 1 (𝐹 ∈ 𝐴 β†’ 𝐢 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆͺ cuni 4909  dom cdm 5677  ran crn 5678  β€˜cfv 6544  Catccat 17608  Arrowcarw 17972  Homachoma 17973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fv 6552  df-arw 17977
This theorem is referenced by:  arwhoma  17995  coafval  18014
  Copyright terms: Public domain W3C validator