| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwrcl | Structured version Visualization version GIF version | ||
| Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| Ref | Expression |
|---|---|
| arwrcl | ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-arw 18043 | . . 3 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
| 2 | 1 | dmmptss 6241 | . 2 ⊢ dom Arrow ⊆ Cat |
| 3 | elfvdm 6923 | . . 3 ⊢ (𝐹 ∈ (Arrow‘𝐶) → 𝐶 ∈ dom Arrow) | |
| 4 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 5 | 3, 4 | eleq2s 2851 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ dom Arrow) |
| 6 | 2, 5 | sselid 3961 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cuni 4887 dom cdm 5665 ran crn 5666 ‘cfv 6541 Catccat 17678 Arrowcarw 18038 Homachoma 18039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fv 6549 df-arw 18043 |
| This theorem is referenced by: arwhoma 18061 coafval 18080 arweuthinc 49140 |
| Copyright terms: Public domain | W3C validator |