![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwrcl | Structured version Visualization version GIF version |
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
arwrcl | ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-arw 18090 | . . 3 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
2 | 1 | dmmptss 6269 | . 2 ⊢ dom Arrow ⊆ Cat |
3 | elfvdm 6951 | . . 3 ⊢ (𝐹 ∈ (Arrow‘𝐶) → 𝐶 ∈ dom Arrow) | |
4 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
5 | 3, 4 | eleq2s 2859 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ dom Arrow) |
6 | 2, 5 | sselid 3996 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4915 dom cdm 5693 ran crn 5694 ‘cfv 6569 Catccat 17718 Arrowcarw 18085 Homachoma 18086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fv 6577 df-arw 18090 |
This theorem is referenced by: arwhoma 18108 coafval 18127 |
Copyright terms: Public domain | W3C validator |