![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwrcl | Structured version Visualization version GIF version |
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
arwrcl | ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-arw 18019 | . . 3 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
2 | 1 | dmmptss 6247 | . 2 ⊢ dom Arrow ⊆ Cat |
3 | elfvdm 6933 | . . 3 ⊢ (𝐹 ∈ (Arrow‘𝐶) → 𝐶 ∈ dom Arrow) | |
4 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
5 | 3, 4 | eleq2s 2843 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ dom Arrow) |
6 | 2, 5 | sselid 3974 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cuni 4909 dom cdm 5678 ran crn 5679 ‘cfv 6549 Catccat 17647 Arrowcarw 18014 Homachoma 18015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fv 6557 df-arw 18019 |
This theorem is referenced by: arwhoma 18037 coafval 18056 |
Copyright terms: Public domain | W3C validator |