| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwrcl | Structured version Visualization version GIF version | ||
| Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| Ref | Expression |
|---|---|
| arwrcl | ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-arw 17934 | . . 3 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
| 2 | 1 | dmmptss 6190 | . 2 ⊢ dom Arrow ⊆ Cat |
| 3 | elfvdm 6857 | . . 3 ⊢ (𝐹 ∈ (Arrow‘𝐶) → 𝐶 ∈ dom Arrow) | |
| 4 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 5 | 3, 4 | eleq2s 2846 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ dom Arrow) |
| 6 | 2, 5 | sselid 3933 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 dom cdm 5619 ran crn 5620 ‘cfv 6482 Catccat 17570 Arrowcarw 17929 Homachoma 17930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-arw 17934 |
| This theorem is referenced by: arwhoma 17952 coafval 17971 arweuthinc 49524 |
| Copyright terms: Public domain | W3C validator |