| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwrcl | Structured version Visualization version GIF version | ||
| Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| Ref | Expression |
|---|---|
| arwrcl | ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-arw 17995 | . . 3 ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | |
| 2 | 1 | dmmptss 6216 | . 2 ⊢ dom Arrow ⊆ Cat |
| 3 | elfvdm 6897 | . . 3 ⊢ (𝐹 ∈ (Arrow‘𝐶) → 𝐶 ∈ dom Arrow) | |
| 4 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 5 | 3, 4 | eleq2s 2847 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ dom Arrow) |
| 6 | 2, 5 | sselid 3946 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4873 dom cdm 5640 ran crn 5641 ‘cfv 6513 Catccat 17631 Arrowcarw 17990 Homachoma 17991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fv 6521 df-arw 17995 |
| This theorem is referenced by: arwhoma 18013 coafval 18032 arweuthinc 49508 |
| Copyright terms: Public domain | W3C validator |