Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > arwhoma | Structured version Visualization version GIF version |
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwhoma.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
arwhoma | ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | . . . . . . 7 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | arwhoma.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | 1, 2 | arwval 17758 | . . . . . 6 ⊢ 𝐴 = ∪ ran 𝐻 |
4 | 3 | eleq2i 2830 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 ↔ 𝐹 ∈ ∪ ran 𝐻) |
5 | 4 | biimpi 215 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ∪ ran 𝐻) |
6 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | 1 | arwrcl 17759 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
8 | 2, 6, 7 | homaf 17745 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
9 | ffn 6600 | . . . . 5 ⊢ (𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))) | |
10 | fnunirn 7127 | . . . . 5 ⊢ (𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) → (𝐹 ∈ ∪ ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧))) | |
11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ ∪ ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧))) |
12 | 5, 11 | mpbid 231 | . . 3 ⊢ (𝐹 ∈ 𝐴 → ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧)) |
13 | fveq2 6774 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝐻‘〈𝑥, 𝑦〉)) | |
14 | df-ov 7278 | . . . . . 6 ⊢ (𝑥𝐻𝑦) = (𝐻‘〈𝑥, 𝑦〉) | |
15 | 13, 14 | eqtr4di 2796 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝑥𝐻𝑦)) |
16 | 15 | eleq2d 2824 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹 ∈ (𝐻‘𝑧) ↔ 𝐹 ∈ (𝑥𝐻𝑦))) |
17 | 16 | rexxp 5751 | . . 3 ⊢ (∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧) ↔ ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦)) |
18 | 12, 17 | sylib 217 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦)) |
19 | id 22 | . . . . 5 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ (𝑥𝐻𝑦)) | |
20 | 2 | homadm 17755 | . . . . . 6 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → (doma‘𝐹) = 𝑥) |
21 | 2 | homacd 17756 | . . . . . 6 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → (coda‘𝐹) = 𝑦) |
22 | 20, 21 | oveq12d 7293 | . . . . 5 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → ((doma‘𝐹)𝐻(coda‘𝐹)) = (𝑥𝐻𝑦)) |
23 | 19, 22 | eleqtrrd 2842 | . . . 4 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
24 | 23 | rexlimivw 3211 | . . 3 ⊢ (∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
25 | 24 | rexlimivw 3211 | . 2 ⊢ (∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
26 | 18, 25 | syl 17 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 𝒫 cpw 4533 〈cop 4567 ∪ cuni 4839 × cxp 5587 ran crn 5590 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 domacdoma 17735 codaccoda 17736 Arrowcarw 17737 Homachoma 17738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-1st 7831 df-2nd 7832 df-doma 17739 df-coda 17740 df-homa 17741 df-arw 17742 |
This theorem is referenced by: arwdm 17762 arwcd 17763 arwhom 17766 arwdmcd 17767 coapm 17786 |
Copyright terms: Public domain | W3C validator |