MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwhoma Structured version   Visualization version   GIF version

Theorem arwhoma 18007
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwhoma (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))

Proof of Theorem arwhoma
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwrcl.a . . . . . . 7 𝐴 = (Arrow‘𝐶)
2 arwhoma.h . . . . . . 7 𝐻 = (Homa𝐶)
31, 2arwval 18005 . . . . . 6 𝐴 = ran 𝐻
43eleq2i 2820 . . . . 5 (𝐹𝐴𝐹 ran 𝐻)
54biimpi 216 . . . 4 (𝐹𝐴𝐹 ran 𝐻)
6 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
71arwrcl 18006 . . . . . 6 (𝐹𝐴𝐶 ∈ Cat)
82, 6, 7homaf 17992 . . . . 5 (𝐹𝐴𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
9 ffn 6688 . . . . 5 (𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fnunirn 7228 . . . . 5 (𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
118, 9, 103syl 18 . . . 4 (𝐹𝐴 → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
125, 11mpbid 232 . . 3 (𝐹𝐴 → ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧))
13 fveq2 6858 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
14 df-ov 7390 . . . . . 6 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
1513, 14eqtr4di 2782 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
1615eleq2d 2814 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (𝐻𝑧) ↔ 𝐹 ∈ (𝑥𝐻𝑦)))
1716rexxp 5806 . . 3 (∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧) ↔ ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
1812, 17sylib 218 . 2 (𝐹𝐴 → ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
19 id 22 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ (𝑥𝐻𝑦))
202homadm 18002 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (doma𝐹) = 𝑥)
212homacd 18003 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (coda𝐹) = 𝑦)
2220, 21oveq12d 7405 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → ((doma𝐹)𝐻(coda𝐹)) = (𝑥𝐻𝑦))
2319, 22eleqtrrd 2831 . . . 4 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2423rexlimivw 3130 . . 3 (∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2524rexlimivw 3130 . 2 (∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2618, 25syl 17 1 (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  𝒫 cpw 4563  cop 4595   cuni 4871   × cxp 5636  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  domacdoma 17982  codaccoda 17983  Arrowcarw 17984  Homachoma 17985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-1st 7968  df-2nd 7969  df-doma 17986  df-coda 17987  df-homa 17988  df-arw 17989
This theorem is referenced by:  arwdm  18009  arwcd  18010  arwhom  18013  arwdmcd  18014  coapm  18033
  Copyright terms: Public domain W3C validator