| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwhoma | Structured version Visualization version GIF version | ||
| Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwhoma.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| arwhoma | ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | . . . . . . 7 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 2 | arwhoma.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | 1, 2 | arwval 17985 | . . . . . 6 ⊢ 𝐴 = ∪ ran 𝐻 |
| 4 | 3 | eleq2i 2820 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 ↔ 𝐹 ∈ ∪ ran 𝐻) |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ∪ ran 𝐻) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | 1 | arwrcl 17986 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
| 8 | 2, 6, 7 | homaf 17972 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
| 9 | ffn 6670 | . . . . 5 ⊢ (𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 10 | fnunirn 7210 | . . . . 5 ⊢ (𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) → (𝐹 ∈ ∪ ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧))) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ ∪ ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧))) |
| 12 | 5, 11 | mpbid 232 | . . 3 ⊢ (𝐹 ∈ 𝐴 → ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧)) |
| 13 | fveq2 6840 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝐻‘〈𝑥, 𝑦〉)) | |
| 14 | df-ov 7372 | . . . . . 6 ⊢ (𝑥𝐻𝑦) = (𝐻‘〈𝑥, 𝑦〉) | |
| 15 | 13, 14 | eqtr4di 2782 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝑥𝐻𝑦)) |
| 16 | 15 | eleq2d 2814 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹 ∈ (𝐻‘𝑧) ↔ 𝐹 ∈ (𝑥𝐻𝑦))) |
| 17 | 16 | rexxp 5796 | . . 3 ⊢ (∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧) ↔ ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦)) |
| 18 | 12, 17 | sylib 218 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦)) |
| 19 | id 22 | . . . . 5 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ (𝑥𝐻𝑦)) | |
| 20 | 2 | homadm 17982 | . . . . . 6 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → (doma‘𝐹) = 𝑥) |
| 21 | 2 | homacd 17983 | . . . . . 6 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → (coda‘𝐹) = 𝑦) |
| 22 | 20, 21 | oveq12d 7387 | . . . . 5 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → ((doma‘𝐹)𝐻(coda‘𝐹)) = (𝑥𝐻𝑦)) |
| 23 | 19, 22 | eleqtrrd 2831 | . . . 4 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
| 24 | 23 | rexlimivw 3130 | . . 3 ⊢ (∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
| 25 | 24 | rexlimivw 3130 | . 2 ⊢ (∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
| 26 | 18, 25 | syl 17 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 𝒫 cpw 4559 〈cop 4591 ∪ cuni 4867 × cxp 5629 ran crn 5632 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 domacdoma 17962 codaccoda 17963 Arrowcarw 17964 Homachoma 17965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-1st 7947 df-2nd 7948 df-doma 17966 df-coda 17967 df-homa 17968 df-arw 17969 |
| This theorem is referenced by: arwdm 17989 arwcd 17990 arwhom 17993 arwdmcd 17994 coapm 18013 |
| Copyright terms: Public domain | W3C validator |