MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwhoma Structured version   Visualization version   GIF version

Theorem arwhoma 18014
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwhoma (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))

Proof of Theorem arwhoma
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwrcl.a . . . . . . 7 𝐴 = (Arrow‘𝐶)
2 arwhoma.h . . . . . . 7 𝐻 = (Homa𝐶)
31, 2arwval 18012 . . . . . 6 𝐴 = ran 𝐻
43eleq2i 2821 . . . . 5 (𝐹𝐴𝐹 ran 𝐻)
54biimpi 216 . . . 4 (𝐹𝐴𝐹 ran 𝐻)
6 eqid 2730 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
71arwrcl 18013 . . . . . 6 (𝐹𝐴𝐶 ∈ Cat)
82, 6, 7homaf 17999 . . . . 5 (𝐹𝐴𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
9 ffn 6691 . . . . 5 (𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fnunirn 7231 . . . . 5 (𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
118, 9, 103syl 18 . . . 4 (𝐹𝐴 → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
125, 11mpbid 232 . . 3 (𝐹𝐴 → ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧))
13 fveq2 6861 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
14 df-ov 7393 . . . . . 6 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
1513, 14eqtr4di 2783 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
1615eleq2d 2815 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (𝐻𝑧) ↔ 𝐹 ∈ (𝑥𝐻𝑦)))
1716rexxp 5809 . . 3 (∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧) ↔ ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
1812, 17sylib 218 . 2 (𝐹𝐴 → ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
19 id 22 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ (𝑥𝐻𝑦))
202homadm 18009 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (doma𝐹) = 𝑥)
212homacd 18010 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (coda𝐹) = 𝑦)
2220, 21oveq12d 7408 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → ((doma𝐹)𝐻(coda𝐹)) = (𝑥𝐻𝑦))
2319, 22eleqtrrd 2832 . . . 4 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2423rexlimivw 3131 . . 3 (∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2524rexlimivw 3131 . 2 (∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2618, 25syl 17 1 (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  𝒫 cpw 4566  cop 4598   cuni 4874   × cxp 5639  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  domacdoma 17989  codaccoda 17990  Arrowcarw 17991  Homachoma 17992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-1st 7971  df-2nd 7972  df-doma 17993  df-coda 17994  df-homa 17995  df-arw 17996
This theorem is referenced by:  arwdm  18016  arwcd  18017  arwhom  18020  arwdmcd  18021  coapm  18040
  Copyright terms: Public domain W3C validator