MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwhoma Structured version   Visualization version   GIF version

Theorem arwhoma 17384
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhoma.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
arwhoma (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))

Proof of Theorem arwhoma
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwrcl.a . . . . . . 7 𝐴 = (Arrow‘𝐶)
2 arwhoma.h . . . . . . 7 𝐻 = (Homa𝐶)
31, 2arwval 17382 . . . . . 6 𝐴 = ran 𝐻
43eleq2i 2843 . . . . 5 (𝐹𝐴𝐹 ran 𝐻)
54biimpi 219 . . . 4 (𝐹𝐴𝐹 ran 𝐻)
6 eqid 2758 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
71arwrcl 17383 . . . . . 6 (𝐹𝐴𝐶 ∈ Cat)
82, 6, 7homaf 17369 . . . . 5 (𝐹𝐴𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
9 ffn 6503 . . . . 5 (𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fnunirn 7010 . . . . 5 (𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
118, 9, 103syl 18 . . . 4 (𝐹𝐴 → (𝐹 ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧)))
125, 11mpbid 235 . . 3 (𝐹𝐴 → ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧))
13 fveq2 6663 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
14 df-ov 7159 . . . . . 6 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
1513, 14eqtr4di 2811 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
1615eleq2d 2837 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (𝐻𝑧) ↔ 𝐹 ∈ (𝑥𝐻𝑦)))
1716rexxp 5688 . . 3 (∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻𝑧) ↔ ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
1812, 17sylib 221 . 2 (𝐹𝐴 → ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦))
19 id 22 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ (𝑥𝐻𝑦))
202homadm 17379 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (doma𝐹) = 𝑥)
212homacd 17380 . . . . . 6 (𝐹 ∈ (𝑥𝐻𝑦) → (coda𝐹) = 𝑦)
2220, 21oveq12d 7174 . . . . 5 (𝐹 ∈ (𝑥𝐻𝑦) → ((doma𝐹)𝐻(coda𝐹)) = (𝑥𝐻𝑦))
2319, 22eleqtrrd 2855 . . . 4 (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2423rexlimivw 3206 . . 3 (∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2524rexlimivw 3206 . 2 (∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
2618, 25syl 17 1 (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wrex 3071  Vcvv 3409  𝒫 cpw 4497  cop 4531   cuni 4801   × cxp 5526  ran crn 5529   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7156  Basecbs 16554  domacdoma 17359  codaccoda 17360  Arrowcarw 17361  Homachoma 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-1st 7699  df-2nd 7700  df-doma 17363  df-coda 17364  df-homa 17365  df-arw 17366
This theorem is referenced by:  arwdm  17386  arwcd  17387  arwhom  17390  arwdmcd  17391  coapm  17410
  Copyright terms: Public domain W3C validator