![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwhoma | Structured version Visualization version GIF version |
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwhoma.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
arwhoma | ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | . . . . . . 7 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | arwhoma.h | . . . . . . 7 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | 1, 2 | arwval 17943 | . . . . . 6 ⊢ 𝐴 = ∪ ran 𝐻 |
4 | 3 | eleq2i 2824 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 ↔ 𝐹 ∈ ∪ ran 𝐻) |
5 | 4 | biimpi 215 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ∪ ran 𝐻) |
6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | 1 | arwrcl 17944 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) |
8 | 2, 6, 7 | homaf 17930 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) |
9 | ffn 6673 | . . . . 5 ⊢ (𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V) → 𝐻 Fn ((Base‘𝐶) × (Base‘𝐶))) | |
10 | fnunirn 7206 | . . . . 5 ⊢ (𝐻 Fn ((Base‘𝐶) × (Base‘𝐶)) → (𝐹 ∈ ∪ ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧))) | |
11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ ∪ ran 𝐻 ↔ ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧))) |
12 | 5, 11 | mpbid 231 | . . 3 ⊢ (𝐹 ∈ 𝐴 → ∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧)) |
13 | fveq2 6847 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝐻‘〈𝑥, 𝑦〉)) | |
14 | df-ov 7365 | . . . . . 6 ⊢ (𝑥𝐻𝑦) = (𝐻‘〈𝑥, 𝑦〉) | |
15 | 13, 14 | eqtr4di 2789 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐻‘𝑧) = (𝑥𝐻𝑦)) |
16 | 15 | eleq2d 2818 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹 ∈ (𝐻‘𝑧) ↔ 𝐹 ∈ (𝑥𝐻𝑦))) |
17 | 16 | rexxp 5803 | . . 3 ⊢ (∃𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝐹 ∈ (𝐻‘𝑧) ↔ ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦)) |
18 | 12, 17 | sylib 217 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦)) |
19 | id 22 | . . . . 5 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ (𝑥𝐻𝑦)) | |
20 | 2 | homadm 17940 | . . . . . 6 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → (doma‘𝐹) = 𝑥) |
21 | 2 | homacd 17941 | . . . . . 6 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → (coda‘𝐹) = 𝑦) |
22 | 20, 21 | oveq12d 7380 | . . . . 5 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → ((doma‘𝐹)𝐻(coda‘𝐹)) = (𝑥𝐻𝑦)) |
23 | 19, 22 | eleqtrrd 2835 | . . . 4 ⊢ (𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
24 | 23 | rexlimivw 3144 | . . 3 ⊢ (∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
25 | 24 | rexlimivw 3144 | . 2 ⊢ (∃𝑥 ∈ (Base‘𝐶)∃𝑦 ∈ (Base‘𝐶)𝐹 ∈ (𝑥𝐻𝑦) → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
26 | 18, 25 | syl 17 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 Vcvv 3446 𝒫 cpw 4565 〈cop 4597 ∪ cuni 4870 × cxp 5636 ran crn 5639 Fn wfn 6496 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 Basecbs 17094 domacdoma 17920 codaccoda 17921 Arrowcarw 17922 Homachoma 17923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-1st 7926 df-2nd 7927 df-doma 17924 df-coda 17925 df-homa 17926 df-arw 17927 |
This theorem is referenced by: arwdm 17947 arwcd 17948 arwhom 17951 arwdmcd 17952 coapm 17971 |
Copyright terms: Public domain | W3C validator |