![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfne | Structured version Visualization version GIF version |
Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.) |
Ref | Expression |
---|---|
topfne.1 | β’ π = βͺ π½ |
topfne.2 | β’ π = βͺ πΎ |
Ref | Expression |
---|---|
topfne | β’ ((πΎ β Top β§ π = π) β (π½ β πΎ β π½FneπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 22796 | . . . 4 β’ (πΎ β Top β (topGenβπΎ) = πΎ) | |
2 | 1 | sseq2d 4014 | . . 3 β’ (πΎ β Top β (π½ β (topGenβπΎ) β π½ β πΎ)) |
3 | 2 | bicomd 222 | . 2 β’ (πΎ β Top β (π½ β πΎ β π½ β (topGenβπΎ))) |
4 | topfne.1 | . . . 4 β’ π = βͺ π½ | |
5 | topfne.2 | . . . 4 β’ π = βͺ πΎ | |
6 | 4, 5 | isfne4 35689 | . . 3 β’ (π½FneπΎ β (π = π β§ π½ β (topGenβπΎ))) |
7 | 6 | baibr 536 | . 2 β’ (π = π β (π½ β (topGenβπΎ) β π½FneπΎ)) |
8 | 3, 7 | sylan9bb 509 | 1 β’ ((πΎ β Top β§ π = π) β (π½ β πΎ β π½FneπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β wss 3948 βͺ cuni 4908 class class class wbr 5148 βcfv 6543 topGenctg 17390 Topctop 22715 Fnecfne 35685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-topgen 17396 df-top 22716 df-fne 35686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |