Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfne | Structured version Visualization version GIF version |
Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.) |
Ref | Expression |
---|---|
topfne.1 | ⊢ 𝑋 = ∪ 𝐽 |
topfne.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
topfne | ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 21870 | . . . 4 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
2 | 1 | sseq2d 3933 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽 ⊆ 𝐾)) |
3 | 2 | bicomd 226 | . 2 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ 𝐾 ↔ 𝐽 ⊆ (topGen‘𝐾))) |
4 | topfne.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
5 | topfne.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
6 | 4, 5 | isfne4 34266 | . . 3 ⊢ (𝐽Fne𝐾 ↔ (𝑋 = 𝑌 ∧ 𝐽 ⊆ (topGen‘𝐾))) |
7 | 6 | baibr 540 | . 2 ⊢ (𝑋 = 𝑌 → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽Fne𝐾)) |
8 | 3, 7 | sylan9bb 513 | 1 ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ∪ cuni 4819 class class class wbr 5053 ‘cfv 6380 topGenctg 16942 Topctop 21790 Fnecfne 34262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-topgen 16948 df-top 21791 df-fne 34263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |