| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topfne | Structured version Visualization version GIF version | ||
| Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.) |
| Ref | Expression |
|---|---|
| topfne.1 | ⊢ 𝑋 = ∪ 𝐽 |
| topfne.2 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| topfne | ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgtop 22836 | . . . 4 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
| 2 | 1 | sseq2d 3976 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽 ⊆ 𝐾)) |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ 𝐾 ↔ 𝐽 ⊆ (topGen‘𝐾))) |
| 4 | topfne.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | topfne.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
| 6 | 4, 5 | isfne4 36301 | . . 3 ⊢ (𝐽Fne𝐾 ↔ (𝑋 = 𝑌 ∧ 𝐽 ⊆ (topGen‘𝐾))) |
| 7 | 6 | baibr 536 | . 2 ⊢ (𝑋 = 𝑌 → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽Fne𝐾)) |
| 8 | 3, 7 | sylan9bb 509 | 1 ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∪ cuni 4867 class class class wbr 5102 ‘cfv 6499 topGenctg 17376 Topctop 22756 Fnecfne 36297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topgen 17382 df-top 22757 df-fne 36298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |