![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfne | Structured version Visualization version GIF version |
Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.) |
Ref | Expression |
---|---|
topfne.1 | ⊢ 𝑋 = ∪ 𝐽 |
topfne.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
topfne | ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 21265 | . . . 4 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
2 | 1 | sseq2d 3920 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽 ⊆ 𝐾)) |
3 | 2 | bicomd 224 | . 2 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ 𝐾 ↔ 𝐽 ⊆ (topGen‘𝐾))) |
4 | topfne.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
5 | topfne.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
6 | 4, 5 | isfne4 33297 | . . 3 ⊢ (𝐽Fne𝐾 ↔ (𝑋 = 𝑌 ∧ 𝐽 ⊆ (topGen‘𝐾))) |
7 | 6 | baibr 537 | . 2 ⊢ (𝑋 = 𝑌 → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽Fne𝐾)) |
8 | 3, 7 | sylan9bb 510 | 1 ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 ∪ cuni 4745 class class class wbr 4962 ‘cfv 6225 topGenctg 16540 Topctop 21185 Fnecfne 33293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-iota 6189 df-fun 6227 df-fv 6233 df-topgen 16546 df-top 21186 df-fne 33294 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |