Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfne Structured version   Visualization version   GIF version

Theorem topfne 34543
Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.)
Hypotheses
Ref Expression
topfne.1 𝑋 = 𝐽
topfne.2 𝑌 = 𝐾
Assertion
Ref Expression
topfne ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽𝐾𝐽Fne𝐾))

Proof of Theorem topfne
StepHypRef Expression
1 tgtop 22123 . . . 4 (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾)
21sseq2d 3953 . . 3 (𝐾 ∈ Top → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽𝐾))
32bicomd 222 . 2 (𝐾 ∈ Top → (𝐽𝐾𝐽 ⊆ (topGen‘𝐾)))
4 topfne.1 . . . 4 𝑋 = 𝐽
5 topfne.2 . . . 4 𝑌 = 𝐾
64, 5isfne4 34529 . . 3 (𝐽Fne𝐾 ↔ (𝑋 = 𝑌𝐽 ⊆ (topGen‘𝐾)))
76baibr 537 . 2 (𝑋 = 𝑌 → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽Fne𝐾))
83, 7sylan9bb 510 1 ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽𝐾𝐽Fne𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887   cuni 4839   class class class wbr 5074  cfv 6433  topGenctg 17148  Topctop 22042  Fnecfne 34525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154  df-top 22043  df-fne 34526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator