Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29pre00 Structured version   Visualization version   GIF version

Theorem cdlemefrs29pre00 40397
Description: ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 40032. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs29.b 𝐵 = (Base‘𝐾)
cdlemefrs29.l = (le‘𝐾)
cdlemefrs29.j = (join‘𝐾)
cdlemefrs29.m = (meet‘𝐾)
cdlemefrs29.a 𝐴 = (Atoms‘𝐾)
cdlemefrs29.h 𝐻 = (LHyp‘𝐾)
cdlemefrs29.eq (𝑠 = 𝑅 → (𝜑𝜓))
Assertion
Ref Expression
cdlemefrs29pre00 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))

Proof of Theorem cdlemefrs29pre00
StepHypRef Expression
1 anass 468 . 2 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
2 simpl3 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝜓)
3 cdlemefrs29.eq . . . . . . 7 (𝑠 = 𝑅 → (𝜑𝜓))
43pm5.32ri 575 . . . . . 6 ((𝜑𝑠 = 𝑅) ↔ (𝜓𝑠 = 𝑅))
54baibr 536 . . . . 5 (𝜓 → (𝑠 = 𝑅 ↔ (𝜑𝑠 = 𝑅)))
62, 5syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 = 𝑅 ↔ (𝜑𝑠 = 𝑅)))
7 cdlemefrs29.l . . . . . . . . . 10 = (le‘𝐾)
8 cdlemefrs29.m . . . . . . . . . 10 = (meet‘𝐾)
9 eqid 2737 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
10 cdlemefrs29.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
11 cdlemefrs29.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
127, 8, 9, 10, 11lhpmat 40032 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
13123adant3 1133 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) → (𝑅 𝑊) = (0.‘𝐾))
1413adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑅 𝑊) = (0.‘𝐾))
1514oveq2d 7447 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 (𝑅 𝑊)) = (𝑠 (0.‘𝐾)))
16 simpl1l 1225 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝐾 ∈ HL)
17 hlol 39362 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
1816, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝐾 ∈ OL)
19 cdlemefrs29.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2019, 10atbase 39290 . . . . . . . 8 (𝑠𝐴𝑠𝐵)
2120adantl 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → 𝑠𝐵)
22 cdlemefrs29.j . . . . . . . 8 = (join‘𝐾)
2319, 22, 9olj01 39226 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑠𝐵) → (𝑠 (0.‘𝐾)) = 𝑠)
2418, 21, 23syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 (0.‘𝐾)) = 𝑠)
2515, 24eqtrd 2777 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑠 (𝑅 𝑊)) = 𝑠)
2625eqeq1d 2739 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((𝑠 (𝑅 𝑊)) = 𝑅𝑠 = 𝑅))
2726anbi2d 630 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (𝜑𝑠 = 𝑅)))
286, 26, 273bitr4d 311 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((𝑠 (𝑅 𝑊)) = 𝑅 ↔ (𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
2928anbi2d 630 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝜑 ∧ (𝑠 (𝑅 𝑊)) = 𝑅))))
301, 29bitr4id 290 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  0.cp0 18468  OLcol 39175  Atomscatm 39264  HLchlt 39351  LHypclh 39986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-lhyp 39990
This theorem is referenced by:  cdlemefrs29clN  40401  cdlemefrs32fva  40402  cdlemefs29pre00N  40414
  Copyright terms: Public domain W3C validator