Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29pre00 Structured version   Visualization version   GIF version

Theorem cdlemefrs29pre00 38887
Description: ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 38522. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs29.b 𝐡 = (Baseβ€˜πΎ)
cdlemefrs29.l ≀ = (leβ€˜πΎ)
cdlemefrs29.j ∨ = (joinβ€˜πΎ)
cdlemefrs29.m ∧ = (meetβ€˜πΎ)
cdlemefrs29.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefrs29.h 𝐻 = (LHypβ€˜πΎ)
cdlemefrs29.eq (𝑠 = 𝑅 β†’ (πœ‘ ↔ πœ“))
Assertion
Ref Expression
cdlemefrs29pre00 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) ↔ (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅)))

Proof of Theorem cdlemefrs29pre00
StepHypRef Expression
1 anass 470 . 2 (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) ↔ (Β¬ 𝑠 ≀ π‘Š ∧ (πœ‘ ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅)))
2 simpl3 1194 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ πœ“)
3 cdlemefrs29.eq . . . . . . 7 (𝑠 = 𝑅 β†’ (πœ‘ ↔ πœ“))
43pm5.32ri 577 . . . . . 6 ((πœ‘ ∧ 𝑠 = 𝑅) ↔ (πœ“ ∧ 𝑠 = 𝑅))
54baibr 538 . . . . 5 (πœ“ β†’ (𝑠 = 𝑅 ↔ (πœ‘ ∧ 𝑠 = 𝑅)))
62, 5syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ (𝑠 = 𝑅 ↔ (πœ‘ ∧ 𝑠 = 𝑅)))
7 cdlemefrs29.l . . . . . . . . . 10 ≀ = (leβ€˜πΎ)
8 cdlemefrs29.m . . . . . . . . . 10 ∧ = (meetβ€˜πΎ)
9 eqid 2737 . . . . . . . . . 10 (0.β€˜πΎ) = (0.β€˜πΎ)
10 cdlemefrs29.a . . . . . . . . . 10 𝐴 = (Atomsβ€˜πΎ)
11 cdlemefrs29.h . . . . . . . . . 10 𝐻 = (LHypβ€˜πΎ)
127, 8, 9, 10, 11lhpmat 38522 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∧ π‘Š) = (0.β€˜πΎ))
13123adant3 1133 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) β†’ (𝑅 ∧ π‘Š) = (0.β€˜πΎ))
1413adantr 482 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ (𝑅 ∧ π‘Š) = (0.β€˜πΎ))
1514oveq2d 7378 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ (𝑠 ∨ (𝑅 ∧ π‘Š)) = (𝑠 ∨ (0.β€˜πΎ)))
16 simpl1l 1225 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ 𝐾 ∈ HL)
17 hlol 37852 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
1816, 17syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ 𝐾 ∈ OL)
19 cdlemefrs29.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΎ)
2019, 10atbase 37780 . . . . . . . 8 (𝑠 ∈ 𝐴 β†’ 𝑠 ∈ 𝐡)
2120adantl 483 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ 𝑠 ∈ 𝐡)
22 cdlemefrs29.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
2319, 22, 9olj01 37716 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑠 ∈ 𝐡) β†’ (𝑠 ∨ (0.β€˜πΎ)) = 𝑠)
2418, 21, 23syl2anc 585 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ (𝑠 ∨ (0.β€˜πΎ)) = 𝑠)
2515, 24eqtrd 2777 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑠)
2625eqeq1d 2739 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ ((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 ↔ 𝑠 = 𝑅))
2726anbi2d 630 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ ((πœ‘ ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) ↔ (πœ‘ ∧ 𝑠 = 𝑅)))
286, 26, 273bitr4d 311 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ ((𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅 ↔ (πœ‘ ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅)))
2928anbi2d 630 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) ↔ (Β¬ 𝑠 ≀ π‘Š ∧ (πœ‘ ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅))))
301, 29bitr4id 290 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ πœ“) ∧ 𝑠 ∈ 𝐴) β†’ (((Β¬ 𝑠 ≀ π‘Š ∧ πœ‘) ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) ↔ (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  meetcmee 18208  0.cp0 18319  OLcol 37665  Atomscatm 37754  HLchlt 37841  LHypclh 38476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-lhyp 38480
This theorem is referenced by:  cdlemefrs29clN  38891  cdlemefrs32fva  38892  cdlemefs29pre00N  38904
  Copyright terms: Public domain W3C validator