MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard Structured version   Visualization version   GIF version

Theorem iscard 9994
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard
StepHypRef Expression
1 cardon 9963 . . 3 (card‘𝐴) ∈ On
2 eleq1 2823 . . 3 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 233 . 2 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 cardonle 9976 . . . 4 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
5 eqss 3979 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
65baibr 536 . . . 4 ((card‘𝐴) ⊆ 𝐴 → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
74, 6syl 17 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
8 dfss3 3952 . . . 4 (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴))
9 onelon 6382 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 onenon 9968 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ dom card)
1110adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
12 cardsdomel 9993 . . . . . 6 ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
139, 11, 12syl2anc 584 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
1413ralbidva 3162 . . . 4 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴)))
158, 14bitr4id 290 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥𝐴))
167, 15bitr3d 281 . 2 (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴))
173, 16biadanii 821 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931   class class class wbr 5124  dom cdm 5659  Oncon0 6357  cfv 6536  csdm 8963  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-card 9958
This theorem is referenced by:  cardprclem  9998  cardmin2  10018  infxpenlem  10032  alephsuc2  10099  cardmin  10583  alephreg  10601  pwcfsdom  10602  winalim2  10715  gchina  10718  inar1  10794  r1tskina  10801  gruina  10837  iscard5  43527
  Copyright terms: Public domain W3C validator