Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscard | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
iscard | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9633 | . . 3 ⊢ (card‘𝐴) ∈ On | |
2 | eleq1 2826 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | cardonle 9646 | . . . 4 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
5 | eqss 3932 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴))) | |
6 | 5 | baibr 536 | . . . 4 ⊢ ((card‘𝐴) ⊆ 𝐴 → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴)) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴)) |
8 | dfss3 3905 | . . . 4 ⊢ (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (card‘𝐴)) | |
9 | onelon 6276 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
10 | onenon 9638 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ dom card) |
12 | cardsdomel 9663 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) | |
13 | 9, 11, 12 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) |
14 | 13 | ralbidva 3119 | . . . 4 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (card‘𝐴))) |
15 | 8, 14 | bitr4id 289 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
16 | 7, 15 | bitr3d 280 | . 2 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
17 | 3, 16 | biadanii 818 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 Oncon0 6251 ‘cfv 6418 ≺ csdm 8690 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 |
This theorem is referenced by: cardprclem 9668 cardmin2 9688 infxpenlem 9700 alephsuc2 9767 cardmin 10251 alephreg 10269 pwcfsdom 10270 winalim2 10383 gchina 10386 inar1 10462 r1tskina 10469 gruina 10505 iscard5 41039 |
Copyright terms: Public domain | W3C validator |