| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscard | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| Ref | Expression |
|---|---|
| iscard | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9834 | . . 3 ⊢ (card‘𝐴) ∈ On | |
| 2 | eleq1 2819 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpbii 233 | . 2 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
| 4 | cardonle 9847 | . . . 4 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
| 5 | eqss 3950 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴))) | |
| 6 | 5 | baibr 536 | . . . 4 ⊢ ((card‘𝐴) ⊆ 𝐴 → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴)) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴)) |
| 8 | dfss3 3923 | . . . 4 ⊢ (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (card‘𝐴)) | |
| 9 | onelon 6331 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 10 | onenon 9839 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ∈ dom card) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ dom card) |
| 12 | cardsdomel 9864 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) | |
| 13 | 9, 11, 12 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑥 ≺ 𝐴 ↔ 𝑥 ∈ (card‘𝐴))) |
| 14 | 13 | ralbidva 3153 | . . . 4 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (card‘𝐴))) |
| 15 | 8, 14 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
| 16 | 7, 15 | bitr3d 281 | . 2 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
| 17 | 3, 16 | biadanii 821 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 class class class wbr 5091 dom cdm 5616 Oncon0 6306 ‘cfv 6481 ≺ csdm 8868 cardccrd 9825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-card 9829 |
| This theorem is referenced by: cardprclem 9869 cardmin2 9889 infxpenlem 9901 alephsuc2 9968 cardmin 10452 alephreg 10470 pwcfsdom 10471 winalim2 10584 gchina 10587 inar1 10663 r1tskina 10670 gruina 10706 iscard5 43568 |
| Copyright terms: Public domain | W3C validator |