MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard Structured version   Visualization version   GIF version

Theorem iscard 9664
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard
StepHypRef Expression
1 cardon 9633 . . 3 (card‘𝐴) ∈ On
2 eleq1 2826 . . 3 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 232 . 2 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 cardonle 9646 . . . 4 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
5 eqss 3932 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
65baibr 536 . . . 4 ((card‘𝐴) ⊆ 𝐴 → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
74, 6syl 17 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
8 dfss3 3905 . . . 4 (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴))
9 onelon 6276 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 onenon 9638 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ dom card)
1110adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
12 cardsdomel 9663 . . . . . 6 ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
139, 11, 12syl2anc 583 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
1413ralbidva 3119 . . . 4 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴)))
158, 14bitr4id 289 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥𝐴))
167, 15bitr3d 280 . 2 (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴))
173, 16biadanii 818 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   class class class wbr 5070  dom cdm 5580  Oncon0 6251  cfv 6418  csdm 8690  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628
This theorem is referenced by:  cardprclem  9668  cardmin2  9688  infxpenlem  9700  alephsuc2  9767  cardmin  10251  alephreg  10269  pwcfsdom  10270  winalim2  10383  gchina  10386  inar1  10462  r1tskina  10469  gruina  10505  iscard5  41039
  Copyright terms: Public domain W3C validator