MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard Structured version   Visualization version   GIF version

Theorem iscard 9875
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard
StepHypRef Expression
1 cardon 9844 . . 3 (card‘𝐴) ∈ On
2 eleq1 2821 . . 3 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 233 . 2 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 cardonle 9857 . . . 4 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
5 eqss 3946 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
65baibr 536 . . . 4 ((card‘𝐴) ⊆ 𝐴 → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
74, 6syl 17 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
8 dfss3 3919 . . . 4 (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴))
9 onelon 6336 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 onenon 9849 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ dom card)
1110adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
12 cardsdomel 9874 . . . . . 6 ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
139, 11, 12syl2anc 584 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
1413ralbidva 3154 . . . 4 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴)))
158, 14bitr4id 290 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥𝐴))
167, 15bitr3d 281 . 2 (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴))
173, 16biadanii 821 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898   class class class wbr 5093  dom cdm 5619  Oncon0 6311  cfv 6486  csdm 8874  cardccrd 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-card 9839
This theorem is referenced by:  cardprclem  9879  cardmin2  9899  infxpenlem  9911  alephsuc2  9978  cardmin  10462  alephreg  10480  pwcfsdom  10481  winalim2  10594  gchina  10597  inar1  10673  r1tskina  10680  gruina  10716  iscard5  43653
  Copyright terms: Public domain W3C validator