MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard Structured version   Visualization version   GIF version

Theorem iscard 9733
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard
StepHypRef Expression
1 cardon 9702 . . 3 (card‘𝐴) ∈ On
2 eleq1 2826 . . 3 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 232 . 2 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 cardonle 9715 . . . 4 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
5 eqss 3936 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
65baibr 537 . . . 4 ((card‘𝐴) ⊆ 𝐴 → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
74, 6syl 17 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
8 dfss3 3909 . . . 4 (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴))
9 onelon 6291 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 onenon 9707 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ dom card)
1110adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
12 cardsdomel 9732 . . . . . 6 ((𝑥 ∈ On ∧ 𝐴 ∈ dom card) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
139, 11, 12syl2anc 584 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴𝑥 ∈ (card‘𝐴)))
1413ralbidva 3111 . . . 4 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 𝑥 ∈ (card‘𝐴)))
158, 14bitr4id 290 . . 3 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ∀𝑥𝐴 𝑥𝐴))
167, 15bitr3d 280 . 2 (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴))
173, 16biadanii 819 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887   class class class wbr 5074  dom cdm 5589  Oncon0 6266  cfv 6433  csdm 8732  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-card 9697
This theorem is referenced by:  cardprclem  9737  cardmin2  9757  infxpenlem  9769  alephsuc2  9836  cardmin  10320  alephreg  10338  pwcfsdom  10339  winalim2  10452  gchina  10455  inar1  10531  r1tskina  10538  gruina  10574  iscard5  41143
  Copyright terms: Public domain W3C validator