| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elioo5 | Structured version Visualization version GIF version | ||
| Description: Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
| Ref | Expression |
|---|---|
| elioo5 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo1 13288 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 3 | 3anass 1094 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 4 | 3 | baibr 536 | . . 3 ⊢ (𝐶 ∈ ℝ* → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 5 | 4 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 6 | 2, 5 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝ*cxr 11148 < clt 11149 (,)cioo 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-xr 11153 df-ioo 13252 |
| This theorem is referenced by: iooshf 13329 iooneg 13374 lhop1 25917 tan2h 37592 poimir 37633 ftc1anclem1 37673 dvrelog2b 42039 aks4d1p1p6 42046 aks4d1p1p5 42048 |
| Copyright terms: Public domain | W3C validator |