MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioo5 Structured version   Visualization version   GIF version

Theorem elioo5 13065
Description: Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
elioo5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem elioo5
StepHypRef Expression
1 elioo1 13048 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
213adant3 1130 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
3 3anass 1093 . . . 4 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
43baibr 536 . . 3 (𝐶 ∈ ℝ* → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
543ad2ant3 1133 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
62, 5bitr4d 281 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  (class class class)co 7255  *cxr 10939   < clt 10940  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-xr 10944  df-ioo 13012
This theorem is referenced by:  iooshf  13087  iooneg  13132  lhop1  25083  tan2h  35696  poimir  35737  ftc1anclem1  35777  dvrelog2b  40002  aks4d1p1p6  40009  aks4d1p1p5  40011
  Copyright terms: Public domain W3C validator