MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioo5 Structured version   Visualization version   GIF version

Theorem elioo5 13387
Description: Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
elioo5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem elioo5
StepHypRef Expression
1 elioo1 13370 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
213adant3 1130 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
3 3anass 1093 . . . 4 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
43baibr 535 . . 3 (𝐶 ∈ ℝ* → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
543ad2ant3 1133 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
62, 5bitr4d 281 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085  wcel 2104   class class class wbr 5149  (class class class)co 7413  *cxr 11253   < clt 11254  (,)cioo 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-xr 11258  df-ioo 13334
This theorem is referenced by:  iooshf  13409  iooneg  13454  lhop1  25765  tan2h  36785  poimir  36826  ftc1anclem1  36866  dvrelog2b  41239  aks4d1p1p6  41246  aks4d1p1p5  41248
  Copyright terms: Public domain W3C validator