Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bits0ALTV Structured version   Visualization version   GIF version

Theorem bits0ALTV 47604
Description: Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.)
Assertion
Ref Expression
bits0ALTV (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd ))

Proof of Theorem bits0ALTV
StepHypRef Expression
1 0nn0 12539 . . 3 0 ∈ ℕ0
2 bitsval2 16459 . . 3 ((𝑁 ∈ ℤ ∧ 0 ∈ ℕ0) → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0)))))
31, 2mpan2 691 . 2 (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0)))))
4 2cn 12339 . . . . . . . . 9 2 ∈ ℂ
5 exp0 14103 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
64, 5ax-mp 5 . . . . . . . 8 (2↑0) = 1
76oveq2i 7442 . . . . . . 7 (𝑁 / (2↑0)) = (𝑁 / 1)
8 zcn 12616 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
98div1d 12033 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 / 1) = 𝑁)
107, 9eqtrid 2787 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 / (2↑0)) = 𝑁)
1110fveq2d 6911 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
12 flid 13845 . . . . 5 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
1311, 12eqtrd 2775 . . . 4 (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = 𝑁)
1413breq2d 5160 . . 3 (𝑁 ∈ ℤ → (2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ 2 ∥ 𝑁))
1514notbid 318 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ ¬ 2 ∥ 𝑁))
16 isodd3 47577 . . 3 (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))
1716baibr 536 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁𝑁 ∈ Odd ))
183, 15, 173bitrd 305 1 (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   / cdiv 11918  2c2 12319  0cn0 12524  cz 12611  cfl 13827  cexp 14099  cdvds 16287  bitscbits 16453   Odd codd 47550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fl 13829  df-seq 14040  df-exp 14100  df-dvds 16288  df-bits 16456  df-odd 47552
This theorem is referenced by:  bits0eALTV  47605  bits0oALTV  47606
  Copyright terms: Public domain W3C validator