Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bits0ALTV | Structured version Visualization version GIF version |
Description: Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
Ref | Expression |
---|---|
bits0ALTV | ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12276 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | bitsval2 16160 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℕ0) → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0))))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0))))) |
4 | 2cn 12076 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
5 | exp0 13814 | . . . . . . . . 9 ⊢ (2 ∈ ℂ → (2↑0) = 1) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (2↑0) = 1 |
7 | 6 | oveq2i 7306 | . . . . . . 7 ⊢ (𝑁 / (2↑0)) = (𝑁 / 1) |
8 | zcn 12352 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
9 | 8 | div1d 11771 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 1) = 𝑁) |
10 | 7, 9 | eqtrid 2785 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2↑0)) = 𝑁) |
11 | 10 | fveq2d 6796 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁)) |
12 | flid 13556 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁) | |
13 | 11, 12 | eqtrd 2773 | . . . 4 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = 𝑁) |
14 | 13 | breq2d 5089 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ 2 ∥ 𝑁)) |
15 | 14 | notbid 317 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ ¬ 2 ∥ 𝑁)) |
16 | isodd3 45144 | . . 3 ⊢ (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) | |
17 | 16 | baibr 536 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 𝑁 ∈ Odd )) |
18 | 3, 15, 17 | 3bitrd 304 | 1 ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1537 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 ℂcc 10897 0cc0 10899 1c1 10900 / cdiv 11660 2c2 12056 ℕ0cn0 12261 ℤcz 12347 ⌊cfl 13538 ↑cexp 13810 ∥ cdvds 15991 bitscbits 16154 Odd codd 45117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-fl 13540 df-seq 13750 df-exp 13811 df-dvds 15992 df-bits 16157 df-odd 45119 |
This theorem is referenced by: bits0eALTV 45172 bits0oALTV 45173 |
Copyright terms: Public domain | W3C validator |