![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bits0ALTV | Structured version Visualization version GIF version |
Description: Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
Ref | Expression |
---|---|
bits0ALTV | β’ (π β β€ β (0 β (bitsβπ) β π β Odd )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12491 | . . 3 β’ 0 β β0 | |
2 | bitsval2 16370 | . . 3 β’ ((π β β€ β§ 0 β β0) β (0 β (bitsβπ) β Β¬ 2 β₯ (ββ(π / (2β0))))) | |
3 | 1, 2 | mpan2 687 | . 2 β’ (π β β€ β (0 β (bitsβπ) β Β¬ 2 β₯ (ββ(π / (2β0))))) |
4 | 2cn 12291 | . . . . . . . . 9 β’ 2 β β | |
5 | exp0 14035 | . . . . . . . . 9 β’ (2 β β β (2β0) = 1) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 β’ (2β0) = 1 |
7 | 6 | oveq2i 7422 | . . . . . . 7 β’ (π / (2β0)) = (π / 1) |
8 | zcn 12567 | . . . . . . . 8 β’ (π β β€ β π β β) | |
9 | 8 | div1d 11986 | . . . . . . 7 β’ (π β β€ β (π / 1) = π) |
10 | 7, 9 | eqtrid 2782 | . . . . . 6 β’ (π β β€ β (π / (2β0)) = π) |
11 | 10 | fveq2d 6894 | . . . . 5 β’ (π β β€ β (ββ(π / (2β0))) = (ββπ)) |
12 | flid 13777 | . . . . 5 β’ (π β β€ β (ββπ) = π) | |
13 | 11, 12 | eqtrd 2770 | . . . 4 β’ (π β β€ β (ββ(π / (2β0))) = π) |
14 | 13 | breq2d 5159 | . . 3 β’ (π β β€ β (2 β₯ (ββ(π / (2β0))) β 2 β₯ π)) |
15 | 14 | notbid 317 | . 2 β’ (π β β€ β (Β¬ 2 β₯ (ββ(π / (2β0))) β Β¬ 2 β₯ π)) |
16 | isodd3 46618 | . . 3 β’ (π β Odd β (π β β€ β§ Β¬ 2 β₯ π)) | |
17 | 16 | baibr 535 | . 2 β’ (π β β€ β (Β¬ 2 β₯ π β π β Odd )) |
18 | 3, 15, 17 | 3bitrd 304 | 1 β’ (π β β€ β (0 β (bitsβπ) β π β Odd )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 βcc 11110 0cc0 11112 1c1 11113 / cdiv 11875 2c2 12271 β0cn0 12476 β€cz 12562 βcfl 13759 βcexp 14031 β₯ cdvds 16201 bitscbits 16364 Odd codd 46591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fl 13761 df-seq 13971 df-exp 14032 df-dvds 16202 df-bits 16367 df-odd 46593 |
This theorem is referenced by: bits0eALTV 46646 bits0oALTV 46647 |
Copyright terms: Public domain | W3C validator |