MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcelnn Structured version   Visualization version   GIF version

Theorem pcelnn 16839
Description: There are a positive number of powers of a prime 𝑃 in 𝑁 iff 𝑃 divides 𝑁. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcelnn ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))

Proof of Theorem pcelnn
StepHypRef Expression
1 nnz 12610 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 1nn0 12519 . . . 4 1 ∈ ℕ0
3 pcdvdsb 16838 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℕ0) → (1 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃↑1) ∥ 𝑁))
42, 3mp3an3 1447 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃↑1) ∥ 𝑁))
51, 4sylan2 592 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (1 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃↑1) ∥ 𝑁))
6 pccl 16818 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0)
7 elnnnn0c 12548 . . . 4 ((𝑃 pCnt 𝑁) ∈ ℕ ↔ ((𝑃 pCnt 𝑁) ∈ ℕ0 ∧ 1 ≤ (𝑃 pCnt 𝑁)))
87baibr 536 . . 3 ((𝑃 pCnt 𝑁) ∈ ℕ0 → (1 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃 pCnt 𝑁) ∈ ℕ))
96, 8syl 17 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (1 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃 pCnt 𝑁) ∈ ℕ))
10 prmnn 16645 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1110nncnd 12259 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1211exp1d 14138 . . . 4 (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃)
1312adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑1) = 𝑃)
1413breq1d 5158 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃↑1) ∥ 𝑁𝑃𝑁))
155, 9, 143bitr3d 309 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099   class class class wbr 5148  (class class class)co 7420  1c1 11140  cle 11280  cn 12243  0cn0 12503  cz 12589  cexp 14059  cdvds 16231  cprime 16642   pCnt cpc 16805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-gcd 16470  df-prm 16643  df-pc 16806
This theorem is referenced by:  pceq0  16840  pc2dvds  16848  1arith  16896  isppw2  27060  sqf11  27084  sqff1o  27127  chtublem  27157  perfect  27177  lgsne0  27281  dchrisum0flblem2  27455  aks4d1p7d1  41553  aks4d1p8d2  41556  aks4d1p8d3  41557  aks4d1p8  41558  aks6d1c2p2  41590  aks6d1c7  41656  perfectALTV  47063
  Copyright terms: Public domain W3C validator