MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimresb Structured version   Visualization version   GIF version

Theorem rlimresb 15274
Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimresb.1 (𝜑𝐹:𝐴⟶ℂ)
rlimresb.2 (𝜑𝐴 ⊆ ℝ)
rlimresb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimresb (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))

Proof of Theorem rlimresb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcl 15212 . . . 4 ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
21a1i 11 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
3 rlimcl 15212 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
43a1i 11 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
5 rlimresb.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℝ)
65adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐴 ⊆ ℝ)
7 simprrl 778 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥𝐴)
86, 7sseldd 3922 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ ℝ)
9 rlimresb.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
109adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵 ∈ ℝ)
11 elicopnf 13177 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℝ → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
129, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
1312biimpa 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1413adantrr 714 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1514simpld 495 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧 ∈ ℝ)
1614simprd 496 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑧)
17 simprrr 779 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧𝑥)
1810, 15, 8, 16, 17letrd 11132 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑥)
19 elicopnf 13177 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2010, 19syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
218, 18, 20mpbir2and 710 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ (𝐵[,)+∞))
2221anassrs 468 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ (𝑥𝐴𝑧𝑥)) → 𝑥 ∈ (𝐵[,)+∞))
2322anassrs 468 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → 𝑥 ∈ (𝐵[,)+∞))
24 biimt 361 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵[,)+∞) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2523, 24syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2625pm5.74da 801 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
27 bi2.04 389 . . . . . . . . . . . 12 ((𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2826, 27bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
2928pm5.74da 801 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))))
30 elin 3903 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
3130imbi1i 350 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
32 impexp 451 . . . . . . . . . . 11 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3331, 32bitri 274 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3429, 33bitr4di 289 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3534ralbidv2 3110 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3635rexbidva 3225 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∃𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3736ralbidv 3112 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3837adantr 481 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
39 rlimresb.1 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
4039ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
4140ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
4241adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
435adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℝ)
44 simpr 485 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
459adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
4642, 43, 44, 45rlim3 15207 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
47 elinel1 4129 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
4847, 40sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℂ)
4948ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
5049adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
51 inss1 4162 . . . . . . . 8 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
5251, 5sstrid 3932 . . . . . . 7 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5352adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5450, 53, 44, 45rlim3 15207 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
5538, 46, 543bitr4d 311 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5655ex 413 . . 3 (𝜑 → (𝐶 ∈ ℂ → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶)))
572, 4, 56pm5.21ndd 381 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5839feqmptd 6837 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5958breq1d 5084 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
60 resres 5904 . . . 4 ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞)))
61 ffn 6600 . . . . . 6 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
62 fnresdm 6551 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
6339, 61, 623syl 18 . . . . 5 (𝜑 → (𝐹𝐴) = 𝐹)
6463reseq1d 5890 . . . 4 (𝜑 → ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐵[,)+∞)))
6558reseq1d 5890 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))))
66 resmpt 5945 . . . . . 6 ((𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6751, 66ax-mp 5 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
6865, 67eqtrdi 2794 . . . 4 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6960, 64, 683eqtr3a 2802 . . 3 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
7069breq1d 5084 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
7157, 59, 703bitr4d 311 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205  +crp 12730  [,)cico 13081  abscabs 14945  𝑟 crli 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-rlim 15198
This theorem is referenced by:  rlimeq  15278  rlimcnp2  26116  cxp2lim  26126  pnt2  26761  pnt  26762
  Copyright terms: Public domain W3C validator