MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimresb Structured version   Visualization version   GIF version

Theorem rlimresb 15262
Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimresb.1 (𝜑𝐹:𝐴⟶ℂ)
rlimresb.2 (𝜑𝐴 ⊆ ℝ)
rlimresb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimresb (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))

Proof of Theorem rlimresb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcl 15200 . . . 4 ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
21a1i 11 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
3 rlimcl 15200 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
43a1i 11 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
5 rlimresb.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℝ)
65adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐴 ⊆ ℝ)
7 simprrl 778 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥𝐴)
86, 7sseldd 3922 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ ℝ)
9 rlimresb.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
109adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵 ∈ ℝ)
11 elicopnf 13165 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℝ → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
129, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
1312biimpa 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1413adantrr 714 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1514simpld 495 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧 ∈ ℝ)
1614simprd 496 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑧)
17 simprrr 779 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧𝑥)
1810, 15, 8, 16, 17letrd 11120 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑥)
19 elicopnf 13165 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2010, 19syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
218, 18, 20mpbir2and 710 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ (𝐵[,)+∞))
2221anassrs 468 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ (𝑥𝐴𝑧𝑥)) → 𝑥 ∈ (𝐵[,)+∞))
2322anassrs 468 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → 𝑥 ∈ (𝐵[,)+∞))
24 biimt 361 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵[,)+∞) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2523, 24syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2625pm5.74da 801 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
27 bi2.04 389 . . . . . . . . . . . 12 ((𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2826, 27bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
2928pm5.74da 801 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))))
30 elin 3903 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
3130imbi1i 350 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
32 impexp 451 . . . . . . . . . . 11 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3331, 32bitri 274 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3429, 33bitr4di 289 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3534ralbidv2 3106 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3635rexbidva 3223 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∃𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3736ralbidv 3108 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3837adantr 481 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
39 rlimresb.1 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
4039ffvelrnda 6954 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
4140ralrimiva 3113 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
4241adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
435adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℝ)
44 simpr 485 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
459adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
4642, 43, 44, 45rlim3 15195 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
47 elinel1 4129 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
4847, 40sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℂ)
4948ralrimiva 3113 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
5049adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
51 inss1 4163 . . . . . . . 8 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
5251, 5sstrid 3932 . . . . . . 7 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5352adantr 481 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5450, 53, 44, 45rlim3 15195 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
5538, 46, 543bitr4d 311 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5655ex 413 . . 3 (𝜑 → (𝐶 ∈ ℂ → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶)))
572, 4, 56pm5.21ndd 381 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5839feqmptd 6830 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5958breq1d 5084 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
60 resres 5898 . . . 4 ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞)))
61 ffn 6593 . . . . . 6 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
62 fnresdm 6544 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
6339, 61, 623syl 18 . . . . 5 (𝜑 → (𝐹𝐴) = 𝐹)
6463reseq1d 5884 . . . 4 (𝜑 → ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐵[,)+∞)))
6558reseq1d 5884 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))))
66 resmpt 5939 . . . . . 6 ((𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6751, 66ax-mp 5 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
6865, 67eqtrdi 2794 . . . 4 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6960, 64, 683eqtr3a 2802 . . 3 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
7069breq1d 5084 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
7157, 59, 703bitr4d 311 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  cres 5587   Fn wfn 6422  wf 6423  cfv 6427  (class class class)co 7268  cc 10857  cr 10858  +∞cpnf 10994   < clt 10997  cle 10998  cmin 11193  +crp 12718  [,)cico 13069  abscabs 14933  𝑟 crli 15182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-pre-lttri 10933  ax-pre-lttrn 10934
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-po 5499  df-so 5500  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8486  df-pm 8606  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-ico 13073  df-rlim 15186
This theorem is referenced by:  rlimeq  15266  rlimcnp2  26104  cxp2lim  26114  pnt2  26749  pnt  26750
  Copyright terms: Public domain W3C validator