MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimresb Structured version   Visualization version   GIF version

Theorem rlimresb 15538
Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimresb.1 (𝜑𝐹:𝐴⟶ℂ)
rlimresb.2 (𝜑𝐴 ⊆ ℝ)
rlimresb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimresb (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))

Proof of Theorem rlimresb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcl 15476 . . . 4 ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
21a1i 11 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
3 rlimcl 15476 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
43a1i 11 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
5 rlimresb.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℝ)
65adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐴 ⊆ ℝ)
7 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥𝐴)
86, 7sseldd 3950 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ ℝ)
9 rlimresb.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
109adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵 ∈ ℝ)
11 elicopnf 13413 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℝ → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
129, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
1312biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1413adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1514simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧 ∈ ℝ)
1614simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑧)
17 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧𝑥)
1810, 15, 8, 16, 17letrd 11338 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑥)
19 elicopnf 13413 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2010, 19syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
218, 18, 20mpbir2and 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ (𝐵[,)+∞))
2221anassrs 467 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ (𝑥𝐴𝑧𝑥)) → 𝑥 ∈ (𝐵[,)+∞))
2322anassrs 467 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → 𝑥 ∈ (𝐵[,)+∞))
24 biimt 360 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵[,)+∞) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2523, 24syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2625pm5.74da 803 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
27 bi2.04 387 . . . . . . . . . . . 12 ((𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2826, 27bitrdi 287 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
2928pm5.74da 803 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))))
30 elin 3933 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
3130imbi1i 349 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
32 impexp 450 . . . . . . . . . . 11 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3331, 32bitri 275 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3429, 33bitr4di 289 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3534ralbidv2 3153 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3635rexbidva 3156 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∃𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3736ralbidv 3157 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3837adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
39 rlimresb.1 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
4039ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
4140ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
4241adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
435adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℝ)
44 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
459adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
4642, 43, 44, 45rlim3 15471 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
47 elinel1 4167 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
4847, 40sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℂ)
4948ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
5049adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
51 inss1 4203 . . . . . . . 8 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
5251, 5sstrid 3961 . . . . . . 7 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5352adantr 480 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5450, 53, 44, 45rlim3 15471 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
5538, 46, 543bitr4d 311 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5655ex 412 . . 3 (𝜑 → (𝐶 ∈ ℂ → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶)))
572, 4, 56pm5.21ndd 379 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5839feqmptd 6932 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5958breq1d 5120 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
60 resres 5966 . . . 4 ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞)))
61 ffn 6691 . . . . . 6 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
62 fnresdm 6640 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
6339, 61, 623syl 18 . . . . 5 (𝜑 → (𝐹𝐴) = 𝐹)
6463reseq1d 5952 . . . 4 (𝜑 → ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐵[,)+∞)))
6558reseq1d 5952 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))))
66 resmpt 6011 . . . . . 6 ((𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6751, 66ax-mp 5 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
6865, 67eqtrdi 2781 . . . 4 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6960, 64, 683eqtr3a 2789 . . 3 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
7069breq1d 5120 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
7157, 59, 703bitr4d 311 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917   class class class wbr 5110  cmpt 5191  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  +∞cpnf 11212   < clt 11215  cle 11216  cmin 11412  +crp 12958  [,)cico 13315  abscabs 15207  𝑟 crli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319  df-rlim 15462
This theorem is referenced by:  rlimeq  15542  rlimcnp2  26883  cxp2lim  26894  pnt2  27531  pnt  27532
  Copyright terms: Public domain W3C validator