Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimresb Structured version   Visualization version   GIF version

Theorem rlimresb 14934
 Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimresb.1 (𝜑𝐹:𝐴⟶ℂ)
rlimresb.2 (𝜑𝐴 ⊆ ℝ)
rlimresb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimresb (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))

Proof of Theorem rlimresb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcl 14872 . . . 4 ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
21a1i 11 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
3 rlimcl 14872 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ)
43a1i 11 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶𝐶 ∈ ℂ))
5 rlimresb.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ⊆ ℝ)
65adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐴 ⊆ ℝ)
7 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥𝐴)
86, 7sseldd 3918 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ ℝ)
9 rlimresb.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
109adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵 ∈ ℝ)
11 elicopnf 12843 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℝ → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
129, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (𝐵[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝐵𝑧)))
1312biimpa 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1413adantrr 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑧 ∈ ℝ ∧ 𝐵𝑧))
1514simpld 498 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧 ∈ ℝ)
1614simprd 499 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑧)
17 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑧𝑥)
1810, 15, 8, 16, 17letrd 10804 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝐵𝑥)
19 elicopnf 12843 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2010, 19syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
218, 18, 20mpbir2and 712 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧 ∈ (𝐵[,)+∞) ∧ (𝑥𝐴𝑧𝑥))) → 𝑥 ∈ (𝐵[,)+∞))
2221anassrs 471 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ (𝑥𝐴𝑧𝑥)) → 𝑥 ∈ (𝐵[,)+∞))
2322anassrs 471 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → 𝑥 ∈ (𝐵[,)+∞))
24 biimt 364 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵[,)+∞) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2523, 24syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) ∧ 𝑧𝑥) → ((abs‘((𝐹𝑥) − 𝐶)) < 𝑦 ↔ (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2625pm5.74da 803 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
27 bi2.04 392 . . . . . . . . . . . 12 ((𝑧𝑥 → (𝑥 ∈ (𝐵[,)+∞) → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
2826, 27syl6bb 290 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐵[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
2928pm5.74da 803 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))))
30 elin 3899 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
3130imbi1i 353 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
32 impexp 454 . . . . . . . . . . 11 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3331, 32bitri 278 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3429, 33bitr4di 292 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → ((𝑥𝐴 → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦))))
3534ralbidv2 3160 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐵[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3635rexbidva 3256 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∃𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3736ralbidv 3162 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
3837adantr 484 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
39 rlimresb.1 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
4039ffvelrnda 6838 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
4140ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
4241adantr 484 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℂ)
435adantr 484 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐴 ⊆ ℝ)
44 simpr 488 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
459adantr 484 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
4642, 43, 44, 45rlim3 14867 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
47 elinel1 4125 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
4847, 40sylan2 595 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℂ)
4948ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
5049adantr 484 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝐹𝑥) ∈ ℂ)
51 inss1 4158 . . . . . . . 8 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
5251, 5sstrid 3928 . . . . . . 7 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5352adantr 484 . . . . . 6 ((𝜑𝐶 ∈ ℂ) → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
5450, 53, 44, 45rlim3 14867 . . . . 5 ((𝜑𝐶 ∈ ℂ) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝐵[,)+∞)∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐶)) < 𝑦)))
5538, 46, 543bitr4d 314 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5655ex 416 . . 3 (𝜑 → (𝐶 ∈ ℂ → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶)))
572, 4, 56pm5.21ndd 384 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
5839feqmptd 6718 . . 3 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5958breq1d 5044 . 2 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
60 resres 5835 . . . 4 ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞)))
61 ffn 6495 . . . . . 6 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
62 fnresdm 6446 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
6339, 61, 623syl 18 . . . . 5 (𝜑 → (𝐹𝐴) = 𝐹)
6463reseq1d 5821 . . . 4 (𝜑 → ((𝐹𝐴) ↾ (𝐵[,)+∞)) = (𝐹 ↾ (𝐵[,)+∞)))
6558reseq1d 5821 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))))
66 resmpt 5876 . . . . . 6 ((𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6751, 66ax-mp 5 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
6865, 67eqtrdi 2849 . . . 4 (𝜑 → (𝐹 ↾ (𝐴 ∩ (𝐵[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
6960, 64, 683eqtr3a 2857 . . 3 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
7069breq1d 5044 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ⇝𝑟 𝐶))
7157, 59, 703bitr4d 314 1 (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   ∩ cin 3882   ⊆ wss 3883   class class class wbr 5034   ↦ cmpt 5114   ↾ cres 5525   Fn wfn 6327  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  ℂcc 10542  ℝcr 10543  +∞cpnf 10679   < clt 10682   ≤ cle 10683   − cmin 10877  ℝ+crp 12397  [,)cico 12748  abscabs 14605   ⇝𝑟 crli 14854 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-pre-lttri 10618  ax-pre-lttrn 10619 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8290  df-pm 8410  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-ico 12752  df-rlim 14858 This theorem is referenced by:  rlimeq  14938  rlimcnp2  25596  cxp2lim  25606  pnt2  26241  pnt  26242
 Copyright terms: Public domain W3C validator