MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1 Structured version   Visualization version   GIF version

Theorem pgpfac1 19133
Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
pgpfac1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Distinct variable groups:   𝑡, 0   𝑡,𝐴   𝑡,   𝑡,𝑃   𝑡,𝐵   𝑡,𝐺   𝑡,𝑆   𝜑,𝑡   𝑡,𝐾
Allowed substitution hints:   𝐸(𝑡)   𝑂(𝑡)

Proof of Theorem pgpfac1
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 18842 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac1.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 18221 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac1.ab . 2 (𝜑𝐴𝐵)
7 pgpfac1.n . . 3 (𝜑𝐵 ∈ Fin)
8 eleq1 2900 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
9 eleq2 2901 . . . . . . 7 (𝑠 = 𝑢 → (𝐴𝑠𝐴𝑢))
108, 9anbi12d 630 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢)))
11 eqeq2 2833 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝑢))
1211anbi2d 628 . . . . . . 7 (𝑠 = 𝑢 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1312rexbidv 3297 . . . . . 6 (𝑠 = 𝑢 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1410, 13imbi12d 346 . . . . 5 (𝑠 = 𝑢 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
1514imbi2d 342 . . . 4 (𝑠 = 𝑢 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
16 eleq1 2900 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
17 eleq2 2901 . . . . . . 7 (𝑠 = 𝐵 → (𝐴𝑠𝐴𝐵))
1816, 17anbi12d 630 . . . . . 6 (𝑠 = 𝐵 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵)))
19 eqeq2 2833 . . . . . . . 8 (𝑠 = 𝐵 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝐵))
2019anbi2d 628 . . . . . . 7 (𝑠 = 𝐵 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2120rexbidv 3297 . . . . . 6 (𝑠 = 𝐵 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2218, 21imbi12d 346 . . . . 5 (𝑠 = 𝐵 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
2322imbi2d 342 . . . 4 (𝑠 = 𝐵 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))))
24 bi2.04 389 . . . . . . . . . . 11 ((𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
25 impexp 451 . . . . . . . . . . . 12 (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2625imbi2i 337 . . . . . . . . . . 11 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
27 impexp 451 . . . . . . . . . . . 12 (((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2827imbi2i 337 . . . . . . . . . . 11 ((𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
2924, 26, 283bitr4i 304 . . . . . . . . . 10 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3029imbi2i 337 . . . . . . . . 9 ((𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
31 bi2.04 389 . . . . . . . . 9 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
32 bi2.04 389 . . . . . . . . 9 ((𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3330, 31, 323bitr4i 304 . . . . . . . 8 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3433albii 1811 . . . . . . 7 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
35 df-ral 3143 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
36 r19.21v 3175 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3734, 35, 363bitr2i 300 . . . . . 6 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
38 psseq1 4063 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝑢𝑠𝑢))
39 eleq2 2901 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝐴𝑥𝐴𝑠))
4038, 39anbi12d 630 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥𝑢𝐴𝑥) ↔ (𝑠𝑢𝐴𝑠)))
41 ineq2 4182 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆𝑦) = (𝑆𝑡))
4241eqeq1d 2823 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆𝑦) = { 0 } ↔ (𝑆𝑡) = { 0 }))
43 oveq2 7153 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆 𝑦) = (𝑆 𝑡))
4443eqeq1d 2823 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆 𝑦) = 𝑥 ↔ (𝑆 𝑡) = 𝑥))
4542, 44anbi12d 630 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥)))
4645cbvrexvw 3451 . . . . . . . . . . 11 (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥))
47 eqeq2 2833 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑆 𝑡) = 𝑥 ↔ (𝑆 𝑡) = 𝑠))
4847anbi2d 628 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
4948rexbidv 3297 . . . . . . . . . . 11 (𝑥 = 𝑠 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5046, 49syl5bb 284 . . . . . . . . . 10 (𝑥 = 𝑠 → (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5140, 50imbi12d 346 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
5251cbvralvw 3450 . . . . . . . 8 (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
53 pgpfac1.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
54 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
55 pgpfac1.o . . . . . . . . . 10 𝑂 = (od‘𝐺)
56 pgpfac1.e . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
57 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
58 pgpfac1.l . . . . . . . . . 10 = (LSSum‘𝐺)
59 pgpfac1.p . . . . . . . . . . 11 (𝜑𝑃 pGrp 𝐺)
6059adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑃 pGrp 𝐺)
611adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐺 ∈ Abel)
627adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐵 ∈ Fin)
63 pgpfac1.oe . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) = 𝐸)
6463adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → (𝑂𝐴) = 𝐸)
65 simprrl 777 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑢 ∈ (SubGrp‘𝐺))
66 simprrr 778 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐴𝑢)
67 simprl 767 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)))
6867, 52sylib 219 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
6953, 54, 3, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68pgpfac1lem5 19132 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))
7069exp32 421 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7152, 70syl5bir 244 . . . . . . 7 (𝜑 → (∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7271a2i 14 . . . . . 6 ((𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7337, 72sylbi 218 . . . . 5 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7473a1i 11 . . . 4 (𝑢 ∈ Fin → (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
7515, 23, 74findcard3 8750 . . 3 (𝐵 ∈ Fin → (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
767, 75mpcom 38 . 2 (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
775, 6, 76mp2and 695 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1526   = wceq 1528  wcel 2105  wral 3138  wrex 3139  cin 3934  wpss 3936  {csn 4559   class class class wbr 5058  cfv 6349  (class class class)co 7145  Fincfn 8498  Basecbs 16473  0gc0g 16703  mrClscmrc 16844  Grpcgrp 18043  SubGrpcsubg 18213  odcod 18583  gExcgex 18584   pGrp cpgp 18585  LSSumclsm 18690  Abelcabl 18838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-rpss 7438  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098  df-er 8279  df-ec 8281  df-qs 8285  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-acn 9360  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-q 12338  df-rp 12380  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-sum 15033  df-dvds 15598  df-gcd 15834  df-prm 16006  df-pc 16164  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-0g 16705  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-grp 18046  df-minusg 18047  df-sbg 18048  df-mulg 18165  df-subg 18216  df-eqg 18218  df-ga 18360  df-cntz 18387  df-od 18587  df-gex 18588  df-pgp 18589  df-lsm 18692  df-cmn 18839  df-abl 18840
This theorem is referenced by:  pgpfaclem3  19136
  Copyright terms: Public domain W3C validator