MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1 Structured version   Visualization version   GIF version

Theorem pgpfac1 19979
Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
pgpfac1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Distinct variable groups:   𝑡, 0   𝑡,𝐴   𝑡,   𝑡,𝑃   𝑡,𝐵   𝑡,𝐺   𝑡,𝑆   𝜑,𝑡   𝑡,𝐾
Allowed substitution hints:   𝐸(𝑡)   𝑂(𝑡)

Proof of Theorem pgpfac1
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 19682 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac1.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 19025 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac1.ab . 2 (𝜑𝐴𝐵)
7 pgpfac1.n . . 3 (𝜑𝐵 ∈ Fin)
8 eleq1 2816 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
9 eleq2 2817 . . . . . . 7 (𝑠 = 𝑢 → (𝐴𝑠𝐴𝑢))
108, 9anbi12d 632 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢)))
11 eqeq2 2741 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝑢))
1211anbi2d 630 . . . . . . 7 (𝑠 = 𝑢 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1312rexbidv 3153 . . . . . 6 (𝑠 = 𝑢 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1410, 13imbi12d 344 . . . . 5 (𝑠 = 𝑢 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
1514imbi2d 340 . . . 4 (𝑠 = 𝑢 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
16 eleq1 2816 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
17 eleq2 2817 . . . . . . 7 (𝑠 = 𝐵 → (𝐴𝑠𝐴𝐵))
1816, 17anbi12d 632 . . . . . 6 (𝑠 = 𝐵 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵)))
19 eqeq2 2741 . . . . . . . 8 (𝑠 = 𝐵 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝐵))
2019anbi2d 630 . . . . . . 7 (𝑠 = 𝐵 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2120rexbidv 3153 . . . . . 6 (𝑠 = 𝐵 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2218, 21imbi12d 344 . . . . 5 (𝑠 = 𝐵 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
2322imbi2d 340 . . . 4 (𝑠 = 𝐵 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))))
24 bi2.04 387 . . . . . . . . . . 11 ((𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
25 impexp 450 . . . . . . . . . . . 12 (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2625imbi2i 336 . . . . . . . . . . 11 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
27 impexp 450 . . . . . . . . . . . 12 (((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2827imbi2i 336 . . . . . . . . . . 11 ((𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
2924, 26, 283bitr4i 303 . . . . . . . . . 10 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3029imbi2i 336 . . . . . . . . 9 ((𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
31 bi2.04 387 . . . . . . . . 9 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
32 bi2.04 387 . . . . . . . . 9 ((𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3330, 31, 323bitr4i 303 . . . . . . . 8 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3433albii 1819 . . . . . . 7 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
35 df-ral 3045 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
36 r19.21v 3154 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3734, 35, 363bitr2i 299 . . . . . 6 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
38 psseq1 4043 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝑢𝑠𝑢))
39 eleq2 2817 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝐴𝑥𝐴𝑠))
4038, 39anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥𝑢𝐴𝑥) ↔ (𝑠𝑢𝐴𝑠)))
41 ineq2 4167 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆𝑦) = (𝑆𝑡))
4241eqeq1d 2731 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆𝑦) = { 0 } ↔ (𝑆𝑡) = { 0 }))
43 oveq2 7361 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆 𝑦) = (𝑆 𝑡))
4443eqeq1d 2731 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆 𝑦) = 𝑥 ↔ (𝑆 𝑡) = 𝑥))
4542, 44anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥)))
4645cbvrexvw 3208 . . . . . . . . . . 11 (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥))
47 eqeq2 2741 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑆 𝑡) = 𝑥 ↔ (𝑆 𝑡) = 𝑠))
4847anbi2d 630 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
4948rexbidv 3153 . . . . . . . . . . 11 (𝑥 = 𝑠 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5046, 49bitrid 283 . . . . . . . . . 10 (𝑥 = 𝑠 → (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5140, 50imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
5251cbvralvw 3207 . . . . . . . 8 (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
53 pgpfac1.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
54 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
55 pgpfac1.o . . . . . . . . . 10 𝑂 = (od‘𝐺)
56 pgpfac1.e . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
57 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
58 pgpfac1.l . . . . . . . . . 10 = (LSSum‘𝐺)
59 pgpfac1.p . . . . . . . . . . 11 (𝜑𝑃 pGrp 𝐺)
6059adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑃 pGrp 𝐺)
611adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐺 ∈ Abel)
627adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐵 ∈ Fin)
63 pgpfac1.oe . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) = 𝐸)
6463adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → (𝑂𝐴) = 𝐸)
65 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑢 ∈ (SubGrp‘𝐺))
66 simprrr 781 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐴𝑢)
67 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)))
6867, 52sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
6953, 54, 3, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68pgpfac1lem5 19978 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))
7069exp32 420 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7152, 70biimtrrid 243 . . . . . . 7 (𝜑 → (∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7271a2i 14 . . . . . 6 ((𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7337, 72sylbi 217 . . . . 5 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7473a1i 11 . . . 4 (𝑢 ∈ Fin → (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
7515, 23, 74findcard3 9187 . . 3 (𝐵 ∈ Fin → (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
767, 75mpcom 38 . 2 (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
775, 6, 76mp2and 699 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3904  wpss 3906  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  Basecbs 17138  0gc0g 17361  mrClscmrc 17503  Grpcgrp 18830  SubGrpcsubg 19017  odcod 19421  gExcgex 19422   pGrp cpgp 19423  LSSumclsm 19531  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-eqg 19022  df-ga 19187  df-cntz 19214  df-od 19425  df-gex 19426  df-pgp 19427  df-lsm 19533  df-cmn 19679  df-abl 19680
This theorem is referenced by:  pgpfaclem3  19982
  Copyright terms: Public domain W3C validator