MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1 Structured version   Visualization version   GIF version

Theorem pgpfac1 20115
Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
pgpfac1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Distinct variable groups:   𝑡, 0   𝑡,𝐴   𝑡,   𝑡,𝑃   𝑡,𝐵   𝑡,𝐺   𝑡,𝑆   𝜑,𝑡   𝑡,𝐾
Allowed substitution hints:   𝐸(𝑡)   𝑂(𝑡)

Proof of Theorem pgpfac1
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 19818 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac1.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 19159 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac1.ab . 2 (𝜑𝐴𝐵)
7 pgpfac1.n . . 3 (𝜑𝐵 ∈ Fin)
8 eleq1 2827 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
9 eleq2 2828 . . . . . . 7 (𝑠 = 𝑢 → (𝐴𝑠𝐴𝑢))
108, 9anbi12d 632 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢)))
11 eqeq2 2747 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝑢))
1211anbi2d 630 . . . . . . 7 (𝑠 = 𝑢 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1312rexbidv 3177 . . . . . 6 (𝑠 = 𝑢 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1410, 13imbi12d 344 . . . . 5 (𝑠 = 𝑢 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
1514imbi2d 340 . . . 4 (𝑠 = 𝑢 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
16 eleq1 2827 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
17 eleq2 2828 . . . . . . 7 (𝑠 = 𝐵 → (𝐴𝑠𝐴𝐵))
1816, 17anbi12d 632 . . . . . 6 (𝑠 = 𝐵 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵)))
19 eqeq2 2747 . . . . . . . 8 (𝑠 = 𝐵 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝐵))
2019anbi2d 630 . . . . . . 7 (𝑠 = 𝐵 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2120rexbidv 3177 . . . . . 6 (𝑠 = 𝐵 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2218, 21imbi12d 344 . . . . 5 (𝑠 = 𝐵 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
2322imbi2d 340 . . . 4 (𝑠 = 𝐵 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))))
24 bi2.04 387 . . . . . . . . . . 11 ((𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
25 impexp 450 . . . . . . . . . . . 12 (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2625imbi2i 336 . . . . . . . . . . 11 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
27 impexp 450 . . . . . . . . . . . 12 (((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2827imbi2i 336 . . . . . . . . . . 11 ((𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
2924, 26, 283bitr4i 303 . . . . . . . . . 10 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3029imbi2i 336 . . . . . . . . 9 ((𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
31 bi2.04 387 . . . . . . . . 9 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
32 bi2.04 387 . . . . . . . . 9 ((𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3330, 31, 323bitr4i 303 . . . . . . . 8 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3433albii 1816 . . . . . . 7 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
35 df-ral 3060 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
36 r19.21v 3178 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3734, 35, 363bitr2i 299 . . . . . 6 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
38 psseq1 4100 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝑢𝑠𝑢))
39 eleq2 2828 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝐴𝑥𝐴𝑠))
4038, 39anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥𝑢𝐴𝑥) ↔ (𝑠𝑢𝐴𝑠)))
41 ineq2 4222 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆𝑦) = (𝑆𝑡))
4241eqeq1d 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆𝑦) = { 0 } ↔ (𝑆𝑡) = { 0 }))
43 oveq2 7439 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆 𝑦) = (𝑆 𝑡))
4443eqeq1d 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆 𝑦) = 𝑥 ↔ (𝑆 𝑡) = 𝑥))
4542, 44anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥)))
4645cbvrexvw 3236 . . . . . . . . . . 11 (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥))
47 eqeq2 2747 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑆 𝑡) = 𝑥 ↔ (𝑆 𝑡) = 𝑠))
4847anbi2d 630 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
4948rexbidv 3177 . . . . . . . . . . 11 (𝑥 = 𝑠 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5046, 49bitrid 283 . . . . . . . . . 10 (𝑥 = 𝑠 → (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5140, 50imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
5251cbvralvw 3235 . . . . . . . 8 (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
53 pgpfac1.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
54 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
55 pgpfac1.o . . . . . . . . . 10 𝑂 = (od‘𝐺)
56 pgpfac1.e . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
57 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
58 pgpfac1.l . . . . . . . . . 10 = (LSSum‘𝐺)
59 pgpfac1.p . . . . . . . . . . 11 (𝜑𝑃 pGrp 𝐺)
6059adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑃 pGrp 𝐺)
611adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐺 ∈ Abel)
627adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐵 ∈ Fin)
63 pgpfac1.oe . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) = 𝐸)
6463adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → (𝑂𝐴) = 𝐸)
65 simprrl 781 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑢 ∈ (SubGrp‘𝐺))
66 simprrr 782 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐴𝑢)
67 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)))
6867, 52sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
6953, 54, 3, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68pgpfac1lem5 20114 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))
7069exp32 420 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7152, 70biimtrrid 243 . . . . . . 7 (𝜑 → (∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7271a2i 14 . . . . . 6 ((𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7337, 72sylbi 217 . . . . 5 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7473a1i 11 . . . 4 (𝑢 ∈ Fin → (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
7515, 23, 74findcard3 9316 . . 3 (𝐵 ∈ Fin → (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
767, 75mpcom 38 . 2 (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
775, 6, 76mp2and 699 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cin 3962  wpss 3964  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245  0gc0g 17486  mrClscmrc 17628  Grpcgrp 18964  SubGrpcsubg 19151  odcod 19557  gExcgex 19558   pGrp cpgp 19559  LSSumclsm 19667  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-eqg 19156  df-ga 19321  df-cntz 19348  df-od 19561  df-gex 19562  df-pgp 19563  df-lsm 19669  df-cmn 19815  df-abl 19816
This theorem is referenced by:  pgpfaclem3  20118
  Copyright terms: Public domain W3C validator