MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1 Structured version   Visualization version   GIF version

Theorem pgpfac1 19195
Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
pgpfac1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Distinct variable groups:   𝑡, 0   𝑡,𝐴   𝑡,   𝑡,𝑃   𝑡,𝐵   𝑡,𝐺   𝑡,𝑆   𝜑,𝑡   𝑡,𝐾
Allowed substitution hints:   𝐸(𝑡)   𝑂(𝑡)

Proof of Theorem pgpfac1
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 18903 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac1.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 18273 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac1.ab . 2 (𝜑𝐴𝐵)
7 pgpfac1.n . . 3 (𝜑𝐵 ∈ Fin)
8 eleq1 2877 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
9 eleq2 2878 . . . . . . 7 (𝑠 = 𝑢 → (𝐴𝑠𝐴𝑢))
108, 9anbi12d 633 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢)))
11 eqeq2 2810 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝑢))
1211anbi2d 631 . . . . . . 7 (𝑠 = 𝑢 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1312rexbidv 3256 . . . . . 6 (𝑠 = 𝑢 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1410, 13imbi12d 348 . . . . 5 (𝑠 = 𝑢 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
1514imbi2d 344 . . . 4 (𝑠 = 𝑢 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
16 eleq1 2877 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
17 eleq2 2878 . . . . . . 7 (𝑠 = 𝐵 → (𝐴𝑠𝐴𝐵))
1816, 17anbi12d 633 . . . . . 6 (𝑠 = 𝐵 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵)))
19 eqeq2 2810 . . . . . . . 8 (𝑠 = 𝐵 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝐵))
2019anbi2d 631 . . . . . . 7 (𝑠 = 𝐵 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2120rexbidv 3256 . . . . . 6 (𝑠 = 𝐵 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2218, 21imbi12d 348 . . . . 5 (𝑠 = 𝐵 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
2322imbi2d 344 . . . 4 (𝑠 = 𝐵 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))))
24 bi2.04 392 . . . . . . . . . . 11 ((𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
25 impexp 454 . . . . . . . . . . . 12 (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2625imbi2i 339 . . . . . . . . . . 11 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
27 impexp 454 . . . . . . . . . . . 12 (((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2827imbi2i 339 . . . . . . . . . . 11 ((𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
2924, 26, 283bitr4i 306 . . . . . . . . . 10 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3029imbi2i 339 . . . . . . . . 9 ((𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
31 bi2.04 392 . . . . . . . . 9 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
32 bi2.04 392 . . . . . . . . 9 ((𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3330, 31, 323bitr4i 306 . . . . . . . 8 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3433albii 1821 . . . . . . 7 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
35 df-ral 3111 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
36 r19.21v 3142 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3734, 35, 363bitr2i 302 . . . . . 6 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
38 psseq1 4015 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝑢𝑠𝑢))
39 eleq2 2878 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝐴𝑥𝐴𝑠))
4038, 39anbi12d 633 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥𝑢𝐴𝑥) ↔ (𝑠𝑢𝐴𝑠)))
41 ineq2 4133 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆𝑦) = (𝑆𝑡))
4241eqeq1d 2800 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆𝑦) = { 0 } ↔ (𝑆𝑡) = { 0 }))
43 oveq2 7143 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆 𝑦) = (𝑆 𝑡))
4443eqeq1d 2800 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆 𝑦) = 𝑥 ↔ (𝑆 𝑡) = 𝑥))
4542, 44anbi12d 633 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥)))
4645cbvrexvw 3397 . . . . . . . . . . 11 (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥))
47 eqeq2 2810 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑆 𝑡) = 𝑥 ↔ (𝑆 𝑡) = 𝑠))
4847anbi2d 631 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
4948rexbidv 3256 . . . . . . . . . . 11 (𝑥 = 𝑠 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5046, 49syl5bb 286 . . . . . . . . . 10 (𝑥 = 𝑠 → (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5140, 50imbi12d 348 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
5251cbvralvw 3396 . . . . . . . 8 (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
53 pgpfac1.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
54 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
55 pgpfac1.o . . . . . . . . . 10 𝑂 = (od‘𝐺)
56 pgpfac1.e . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
57 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
58 pgpfac1.l . . . . . . . . . 10 = (LSSum‘𝐺)
59 pgpfac1.p . . . . . . . . . . 11 (𝜑𝑃 pGrp 𝐺)
6059adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑃 pGrp 𝐺)
611adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐺 ∈ Abel)
627adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐵 ∈ Fin)
63 pgpfac1.oe . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) = 𝐸)
6463adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → (𝑂𝐴) = 𝐸)
65 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑢 ∈ (SubGrp‘𝐺))
66 simprrr 781 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐴𝑢)
67 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)))
6867, 52sylib 221 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
6953, 54, 3, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68pgpfac1lem5 19194 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))
7069exp32 424 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7152, 70syl5bir 246 . . . . . . 7 (𝜑 → (∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7271a2i 14 . . . . . 6 ((𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7337, 72sylbi 220 . . . . 5 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7473a1i 11 . . . 4 (𝑢 ∈ Fin → (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
7515, 23, 74findcard3 8745 . . 3 (𝐵 ∈ Fin → (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
767, 75mpcom 38 . 2 (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
775, 6, 76mp2and 698 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cin 3880  wpss 3882  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  0gc0g 16705  mrClscmrc 16846  Grpcgrp 18095  SubGrpcsubg 18265  odcod 18644  gExcgex 18645   pGrp cpgp 18646  LSSumclsm 18751  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-eqg 18270  df-ga 18412  df-cntz 18439  df-od 18648  df-gex 18649  df-pgp 18650  df-lsm 18753  df-cmn 18900  df-abl 18901
This theorem is referenced by:  pgpfaclem3  19198
  Copyright terms: Public domain W3C validator