MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1 Structured version   Visualization version   GIF version

Theorem pgpfac1 20049
Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
pgpfac1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Distinct variable groups:   𝑡, 0   𝑡,𝐴   𝑡,   𝑡,𝑃   𝑡,𝐵   𝑡,𝐺   𝑡,𝑆   𝜑,𝑡   𝑡,𝐾
Allowed substitution hints:   𝐸(𝑡)   𝑂(𝑡)

Proof of Theorem pgpfac1
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 19752 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac1.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 19091 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac1.ab . 2 (𝜑𝐴𝐵)
7 pgpfac1.n . . 3 (𝜑𝐵 ∈ Fin)
8 eleq1 2813 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
9 eleq2 2814 . . . . . . 7 (𝑠 = 𝑢 → (𝐴𝑠𝐴𝑢))
108, 9anbi12d 630 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢)))
11 eqeq2 2737 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝑢))
1211anbi2d 628 . . . . . . 7 (𝑠 = 𝑢 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1312rexbidv 3168 . . . . . 6 (𝑠 = 𝑢 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))
1410, 13imbi12d 343 . . . . 5 (𝑠 = 𝑢 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
1514imbi2d 339 . . . 4 (𝑠 = 𝑢 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
16 eleq1 2813 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
17 eleq2 2814 . . . . . . 7 (𝑠 = 𝐵 → (𝐴𝑠𝐴𝐵))
1816, 17anbi12d 630 . . . . . 6 (𝑠 = 𝐵 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) ↔ (𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵)))
19 eqeq2 2737 . . . . . . . 8 (𝑠 = 𝐵 → ((𝑆 𝑡) = 𝑠 ↔ (𝑆 𝑡) = 𝐵))
2019anbi2d 628 . . . . . . 7 (𝑠 = 𝐵 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2120rexbidv 3168 . . . . . 6 (𝑠 = 𝐵 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
2218, 21imbi12d 343 . . . . 5 (𝑠 = 𝐵 → (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
2322imbi2d 339 . . . 4 (𝑠 = 𝐵 → ((𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))))
24 bi2.04 386 . . . . . . . . . . 11 ((𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
25 impexp 449 . . . . . . . . . . . 12 (((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2625imbi2i 335 . . . . . . . . . . 11 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠𝑢 → (𝑠 ∈ (SubGrp‘𝐺) → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
27 impexp 449 . . . . . . . . . . . 12 (((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) ↔ (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
2827imbi2i 335 . . . . . . . . . . 11 ((𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝑠𝑢 → (𝐴𝑠 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
2924, 26, 283bitr4i 302 . . . . . . . . . 10 ((𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3029imbi2i 335 . . . . . . . . 9 ((𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
31 bi2.04 386 . . . . . . . . 9 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠𝑢 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
32 bi2.04 386 . . . . . . . . 9 ((𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → (𝑠 ∈ (SubGrp‘𝐺) → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3330, 31, 323bitr4i 302 . . . . . . . 8 ((𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
3433albii 1813 . . . . . . 7 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
35 df-ral 3051 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ ∀𝑠(𝑠 ∈ (SubGrp‘𝐺) → (𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))))
36 r19.21v 3169 . . . . . . 7 (∀𝑠 ∈ (SubGrp‘𝐺)(𝜑 → ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
3734, 35, 363bitr2i 298 . . . . . 6 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) ↔ (𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
38 psseq1 4083 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝑥𝑢𝑠𝑢))
39 eleq2 2814 . . . . . . . . . . 11 (𝑥 = 𝑠 → (𝐴𝑥𝐴𝑠))
4038, 39anbi12d 630 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥𝑢𝐴𝑥) ↔ (𝑠𝑢𝐴𝑠)))
41 ineq2 4204 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆𝑦) = (𝑆𝑡))
4241eqeq1d 2727 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆𝑦) = { 0 } ↔ (𝑆𝑡) = { 0 }))
43 oveq2 7427 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑆 𝑦) = (𝑆 𝑡))
4443eqeq1d 2727 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑆 𝑦) = 𝑥 ↔ (𝑆 𝑡) = 𝑥))
4542, 44anbi12d 630 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥)))
4645cbvrexvw 3225 . . . . . . . . . . 11 (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥))
47 eqeq2 2737 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑆 𝑡) = 𝑥 ↔ (𝑆 𝑡) = 𝑠))
4847anbi2d 628 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
4948rexbidv 3168 . . . . . . . . . . 11 (𝑥 = 𝑠 → (∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5046, 49bitrid 282 . . . . . . . . . 10 (𝑥 = 𝑠 → (∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥) ↔ ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
5140, 50imbi12d 343 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))))
5251cbvralvw 3224 . . . . . . . 8 (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ↔ ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
53 pgpfac1.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
54 pgpfac1.s . . . . . . . . . 10 𝑆 = (𝐾‘{𝐴})
55 pgpfac1.o . . . . . . . . . 10 𝑂 = (od‘𝐺)
56 pgpfac1.e . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
57 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
58 pgpfac1.l . . . . . . . . . 10 = (LSSum‘𝐺)
59 pgpfac1.p . . . . . . . . . . 11 (𝜑𝑃 pGrp 𝐺)
6059adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑃 pGrp 𝐺)
611adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐺 ∈ Abel)
627adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐵 ∈ Fin)
63 pgpfac1.oe . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) = 𝐸)
6463adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → (𝑂𝐴) = 𝐸)
65 simprrl 779 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝑢 ∈ (SubGrp‘𝐺))
66 simprrr 780 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → 𝐴𝑢)
67 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)))
6867, 52sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))
6953, 54, 3, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68pgpfac1lem5 20048 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) ∧ (𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢))) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))
7069exp32 419 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ (SubGrp‘𝐺)((𝑥𝑢𝐴𝑥) → ∃𝑦 ∈ (SubGrp‘𝐺)((𝑆𝑦) = { 0 } ∧ (𝑆 𝑦) = 𝑥)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7152, 70biimtrrid 242 . . . . . . 7 (𝜑 → (∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)) → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7271a2i 14 . . . . . 6 ((𝜑 → ∀𝑠 ∈ (SubGrp‘𝐺)((𝑠𝑢𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7337, 72sylbi 216 . . . . 5 (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢))))
7473a1i 11 . . . 4 (𝑢 ∈ Fin → (∀𝑠(𝑠𝑢 → (𝜑 → ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑠) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑠)))) → (𝜑 → ((𝑢 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑢) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑢)))))
7515, 23, 74findcard3 9310 . . 3 (𝐵 ∈ Fin → (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))))
767, 75mpcom 38 . 2 (𝜑 → ((𝐵 ∈ (SubGrp‘𝐺) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵)))
775, 6, 76mp2and 697 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531   = wceq 1533  wcel 2098  wral 3050  wrex 3059  cin 3943  wpss 3945  {csn 4630   class class class wbr 5149  cfv 6549  (class class class)co 7419  Fincfn 8964  Basecbs 17183  0gc0g 17424  mrClscmrc 17566  Grpcgrp 18898  SubGrpcsubg 19083  odcod 19491  gExcgex 19492   pGrp cpgp 19493  LSSumclsm 19601  Abelcabl 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-rpss 7729  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-xnn0 12578  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-dvds 16235  df-gcd 16473  df-prm 16646  df-pc 16809  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-0g 17426  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-eqg 19088  df-ga 19253  df-cntz 19280  df-od 19495  df-gex 19496  df-pgp 19497  df-lsm 19603  df-cmn 19749  df-abl 19750
This theorem is referenced by:  pgpfaclem3  20052
  Copyright terms: Public domain W3C validator