| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pgpfac.g | . . 3
⊢ (𝜑 → 𝐺 ∈ Abel) | 
| 2 |  | ablgrp 19804 | . . 3
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | 
| 3 |  | pgpfac.b | . . . 4
⊢ 𝐵 = (Base‘𝐺) | 
| 4 | 3 | subgid 19147 | . . 3
⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) | 
| 5 | 1, 2, 4 | 3syl 18 | . 2
⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) | 
| 6 |  | pgpfac.f | . . 3
⊢ (𝜑 → 𝐵 ∈ Fin) | 
| 7 |  | eleq1 2828 | . . . . . 6
⊢ (𝑡 = 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺))) | 
| 8 |  | eqeq2 2748 | . . . . . . . 8
⊢ (𝑡 = 𝑢 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑢)) | 
| 9 | 8 | anbi2d 630 | . . . . . . 7
⊢ (𝑡 = 𝑢 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))) | 
| 10 | 9 | rexbidv 3178 | . . . . . 6
⊢ (𝑡 = 𝑢 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))) | 
| 11 | 7, 10 | imbi12d 344 | . . . . 5
⊢ (𝑡 = 𝑢 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))) | 
| 12 | 11 | imbi2d 340 | . . . 4
⊢ (𝑡 = 𝑢 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) | 
| 13 |  | eleq1 2828 | . . . . . 6
⊢ (𝑡 = 𝐵 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺))) | 
| 14 |  | eqeq2 2748 | . . . . . . . 8
⊢ (𝑡 = 𝐵 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝐵)) | 
| 15 | 14 | anbi2d 630 | . . . . . . 7
⊢ (𝑡 = 𝐵 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))) | 
| 16 | 15 | rexbidv 3178 | . . . . . 6
⊢ (𝑡 = 𝐵 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))) | 
| 17 | 13, 16 | imbi12d 344 | . . . . 5
⊢ (𝑡 = 𝐵 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))) | 
| 18 | 17 | imbi2d 340 | . . . 4
⊢ (𝑡 = 𝐵 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))) | 
| 19 |  | bi2.04 387 | . . . . . . . . 9
⊢ ((𝑡 ⊊ 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) | 
| 20 | 19 | imbi2i 336 | . . . . . . . 8
⊢ ((𝜑 → (𝑡 ⊊ 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) | 
| 21 |  | bi2.04 387 | . . . . . . . 8
⊢ ((𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ⊊ 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) | 
| 22 |  | bi2.04 387 | . . . . . . . 8
⊢ ((𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) | 
| 23 | 20, 21, 22 | 3bitr4i 303 | . . . . . . 7
⊢ ((𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) | 
| 24 | 23 | albii 1818 | . . . . . 6
⊢
(∀𝑡(𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) | 
| 25 |  | df-ral 3061 | . . . . . 6
⊢
(∀𝑡 ∈
(SubGrp‘𝐺)(𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) | 
| 26 |  | r19.21v 3179 | . . . . . 6
⊢
(∀𝑡 ∈
(SubGrp‘𝐺)(𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) | 
| 27 | 24, 25, 26 | 3bitr2i 299 | . . . . 5
⊢
(∀𝑡(𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) | 
| 28 |  | pgpfac.c | . . . . . . . . 9
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} | 
| 29 | 1 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐺 ∈ Abel) | 
| 30 |  | pgpfac.p | . . . . . . . . . 10
⊢ (𝜑 → 𝑃 pGrp 𝐺) | 
| 31 | 30 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑃 pGrp 𝐺) | 
| 32 | 6 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐵 ∈ Fin) | 
| 33 |  | simprr 772 | . . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑢 ∈ (SubGrp‘𝐺)) | 
| 34 |  | simprl 770 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) | 
| 35 |  | psseq1 4089 | . . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → (𝑡 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢)) | 
| 36 |  | eqeq2 2748 | . . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑥 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑥)) | 
| 37 | 36 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) | 
| 38 | 37 | rexbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) | 
| 39 | 35, 38 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑡 = 𝑥 → ((𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑥 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))) | 
| 40 | 39 | cbvralvw 3236 | . . . . . . . . . 10
⊢
(∀𝑡 ∈
(SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) | 
| 41 | 34, 40 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) | 
| 42 | 3, 28, 29, 31, 32, 33, 41 | pgpfaclem3 20104 | . . . . . . . 8
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)) | 
| 43 | 42 | exp32 420 | . . . . . . 7
⊢ (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))) | 
| 44 | 43 | a1i 11 | . . . . . 6
⊢ (𝑢 ∈ Fin → (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) | 
| 45 | 44 | a2d 29 | . . . . 5
⊢ (𝑢 ∈ Fin → ((𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) | 
| 46 | 27, 45 | biimtrid 242 | . . . 4
⊢ (𝑢 ∈ Fin →
(∀𝑡(𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) | 
| 47 | 12, 18, 46 | findcard3 9319 | . . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))) | 
| 48 | 6, 47 | mpcom 38 | . 2
⊢ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))) | 
| 49 | 5, 48 | mpd 15 | 1
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |