Step | Hyp | Ref
| Expression |
1 | | pgpfac.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
2 | | ablgrp 19391 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
3 | | pgpfac.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
4 | 3 | subgid 18757 |
. . 3
⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
5 | 1, 2, 4 | 3syl 18 |
. 2
⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) |
6 | | pgpfac.f |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
7 | | eleq1 2826 |
. . . . . 6
⊢ (𝑡 = 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺))) |
8 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑡 = 𝑢 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑢)) |
9 | 8 | anbi2d 629 |
. . . . . . 7
⊢ (𝑡 = 𝑢 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))) |
10 | 9 | rexbidv 3226 |
. . . . . 6
⊢ (𝑡 = 𝑢 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))) |
11 | 7, 10 | imbi12d 345 |
. . . . 5
⊢ (𝑡 = 𝑢 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))) |
12 | 11 | imbi2d 341 |
. . . 4
⊢ (𝑡 = 𝑢 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) |
13 | | eleq1 2826 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺))) |
14 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝐵)) |
15 | 14 | anbi2d 629 |
. . . . . . 7
⊢ (𝑡 = 𝐵 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))) |
16 | 15 | rexbidv 3226 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))) |
17 | 13, 16 | imbi12d 345 |
. . . . 5
⊢ (𝑡 = 𝐵 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))) |
18 | 17 | imbi2d 341 |
. . . 4
⊢ (𝑡 = 𝐵 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))) |
19 | | bi2.04 389 |
. . . . . . . . 9
⊢ ((𝑡 ⊊ 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) |
20 | 19 | imbi2i 336 |
. . . . . . . 8
⊢ ((𝜑 → (𝑡 ⊊ 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) |
21 | | bi2.04 389 |
. . . . . . . 8
⊢ ((𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ⊊ 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) |
22 | | bi2.04 389 |
. . . . . . . 8
⊢ ((𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) |
23 | 20, 21, 22 | 3bitr4i 303 |
. . . . . . 7
⊢ ((𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) |
24 | 23 | albii 1822 |
. . . . . 6
⊢
(∀𝑡(𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) |
25 | | df-ral 3069 |
. . . . . 6
⊢
(∀𝑡 ∈
(SubGrp‘𝐺)(𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))) |
26 | | r19.21v 3113 |
. . . . . 6
⊢
(∀𝑡 ∈
(SubGrp‘𝐺)(𝜑 → (𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) |
27 | 24, 25, 26 | 3bitr2i 299 |
. . . . 5
⊢
(∀𝑡(𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) |
28 | | pgpfac.c |
. . . . . . . . 9
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
29 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐺 ∈ Abel) |
30 | | pgpfac.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
31 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑃 pGrp 𝐺) |
32 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐵 ∈ Fin) |
33 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑢 ∈ (SubGrp‘𝐺)) |
34 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) |
35 | | psseq1 4022 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → (𝑡 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢)) |
36 | | eqeq2 2750 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑥 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑥)) |
37 | 36 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) |
38 | 37 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) |
39 | 35, 38 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑥 → ((𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑥 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))) |
40 | 39 | cbvralvw 3383 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
(SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) |
41 | 34, 40 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))) |
42 | 3, 28, 29, 31, 32, 33, 41 | pgpfaclem3 19686 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)) |
43 | 42 | exp32 421 |
. . . . . . 7
⊢ (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))) |
44 | 43 | a1i 11 |
. . . . . 6
⊢ (𝑢 ∈ Fin → (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) |
45 | 44 | a2d 29 |
. . . . 5
⊢ (𝑢 ∈ Fin → ((𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡 ⊊ 𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) |
46 | 27, 45 | syl5bi 241 |
. . . 4
⊢ (𝑢 ∈ Fin →
(∀𝑡(𝑡 ⊊ 𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))) |
47 | 12, 18, 46 | findcard3 9057 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))) |
48 | 6, 47 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))) |
49 | 5, 48 | mpd 15 |
1
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |