MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac Structured version   Visualization version   GIF version

Theorem pgpfac 20016
Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 20012. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
pgpfac (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Distinct variable groups:   𝐶,𝑠   𝑠,𝑟,𝐺   𝐵,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑠,𝑟)

Proof of Theorem pgpfac
Dummy variables 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 19715 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 19060 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac.f . . 3 (𝜑𝐵 ∈ Fin)
7 eleq1 2816 . . . . . 6 (𝑡 = 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
8 eqeq2 2741 . . . . . . . 8 (𝑡 = 𝑢 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑢))
98anbi2d 630 . . . . . . 7 (𝑡 = 𝑢 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
109rexbidv 3157 . . . . . 6 (𝑡 = 𝑢 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
117, 10imbi12d 344 . . . . 5 (𝑡 = 𝑢 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
1211imbi2d 340 . . . 4 (𝑡 = 𝑢 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
13 eleq1 2816 . . . . . 6 (𝑡 = 𝐵 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
14 eqeq2 2741 . . . . . . . 8 (𝑡 = 𝐵 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝐵))
1514anbi2d 630 . . . . . . 7 (𝑡 = 𝐵 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1615rexbidv 3157 . . . . . 6 (𝑡 = 𝐵 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1713, 16imbi12d 344 . . . . 5 (𝑡 = 𝐵 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
1817imbi2d 340 . . . 4 (𝑡 = 𝐵 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))))
19 bi2.04 387 . . . . . . . . 9 ((𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2019imbi2i 336 . . . . . . . 8 ((𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
21 bi2.04 387 . . . . . . . 8 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
22 bi2.04 387 . . . . . . . 8 ((𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2320, 21, 223bitr4i 303 . . . . . . 7 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2423albii 1819 . . . . . 6 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
25 df-ral 3045 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
26 r19.21v 3158 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2724, 25, 263bitr2i 299 . . . . 5 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
28 pgpfac.c . . . . . . . . 9 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
291adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐺 ∈ Abel)
30 pgpfac.p . . . . . . . . . 10 (𝜑𝑃 pGrp 𝐺)
3130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑃 pGrp 𝐺)
326adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐵 ∈ Fin)
33 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑢 ∈ (SubGrp‘𝐺))
34 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
35 psseq1 4053 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡𝑢𝑥𝑢))
36 eqeq2 2741 . . . . . . . . . . . . . 14 (𝑡 = 𝑥 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑥))
3736anbi2d 630 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3837rexbidv 3157 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3935, 38imbi12d 344 . . . . . . . . . . 11 (𝑡 = 𝑥 → ((𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))))
4039cbvralvw 3215 . . . . . . . . . 10 (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
4134, 40sylib 218 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
423, 28, 29, 31, 32, 33, 41pgpfaclem3 20015 . . . . . . . 8 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))
4342exp32 420 . . . . . . 7 (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
4443a1i 11 . . . . . 6 (𝑢 ∈ Fin → (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4544a2d 29 . . . . 5 (𝑢 ∈ Fin → ((𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4627, 45biimtrid 242 . . . 4 (𝑢 ∈ Fin → (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4712, 18, 46findcard3 9229 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
486, 47mpcom 38 . 2 (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
495, 48mpd 15 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cin 3913  wpss 3915   class class class wbr 5107  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  Fincfn 8918  Word cword 14478  Basecbs 17179  s cress 17200  Grpcgrp 18865  SubGrpcsubg 19052   pGrp cpgp 19456  Abelcabl 19711  CycGrpccyg 19807   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-eqg 19057  df-ghm 19145  df-gim 19191  df-ga 19222  df-cntz 19249  df-oppg 19278  df-od 19458  df-gex 19459  df-pgp 19460  df-lsm 19566  df-pj1 19567  df-cmn 19712  df-abl 19713  df-cyg 19808  df-dprd 19927
This theorem is referenced by:  ablfaclem3  20019
  Copyright terms: Public domain W3C validator