MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac Structured version   Visualization version   GIF version

Theorem pgpfac 19200
Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 19196. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
pgpfac (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Distinct variable groups:   𝐶,𝑠   𝑠,𝑟,𝐺   𝐵,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑠,𝑟)

Proof of Theorem pgpfac
Dummy variables 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 18905 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 18275 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac.f . . 3 (𝜑𝐵 ∈ Fin)
7 eleq1 2900 . . . . . 6 (𝑡 = 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
8 eqeq2 2833 . . . . . . . 8 (𝑡 = 𝑢 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑢))
98anbi2d 630 . . . . . . 7 (𝑡 = 𝑢 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
109rexbidv 3297 . . . . . 6 (𝑡 = 𝑢 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
117, 10imbi12d 347 . . . . 5 (𝑡 = 𝑢 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
1211imbi2d 343 . . . 4 (𝑡 = 𝑢 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
13 eleq1 2900 . . . . . 6 (𝑡 = 𝐵 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
14 eqeq2 2833 . . . . . . . 8 (𝑡 = 𝐵 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝐵))
1514anbi2d 630 . . . . . . 7 (𝑡 = 𝐵 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1615rexbidv 3297 . . . . . 6 (𝑡 = 𝐵 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1713, 16imbi12d 347 . . . . 5 (𝑡 = 𝐵 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
1817imbi2d 343 . . . 4 (𝑡 = 𝐵 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))))
19 bi2.04 391 . . . . . . . . 9 ((𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2019imbi2i 338 . . . . . . . 8 ((𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
21 bi2.04 391 . . . . . . . 8 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
22 bi2.04 391 . . . . . . . 8 ((𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2320, 21, 223bitr4i 305 . . . . . . 7 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2423albii 1816 . . . . . 6 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
25 df-ral 3143 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
26 r19.21v 3175 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2724, 25, 263bitr2i 301 . . . . 5 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
28 pgpfac.c . . . . . . . . 9 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
291adantr 483 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐺 ∈ Abel)
30 pgpfac.p . . . . . . . . . 10 (𝜑𝑃 pGrp 𝐺)
3130adantr 483 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑃 pGrp 𝐺)
326adantr 483 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐵 ∈ Fin)
33 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑢 ∈ (SubGrp‘𝐺))
34 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
35 psseq1 4063 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡𝑢𝑥𝑢))
36 eqeq2 2833 . . . . . . . . . . . . . 14 (𝑡 = 𝑥 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑥))
3736anbi2d 630 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3837rexbidv 3297 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3935, 38imbi12d 347 . . . . . . . . . . 11 (𝑡 = 𝑥 → ((𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))))
4039cbvralvw 3449 . . . . . . . . . 10 (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
4134, 40sylib 220 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
423, 28, 29, 31, 32, 33, 41pgpfaclem3 19199 . . . . . . . 8 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))
4342exp32 423 . . . . . . 7 (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
4443a1i 11 . . . . . 6 (𝑢 ∈ Fin → (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4544a2d 29 . . . . 5 (𝑢 ∈ Fin → ((𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4627, 45syl5bi 244 . . . 4 (𝑢 ∈ Fin → (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4712, 18, 46findcard3 8755 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
486, 47mpcom 38 . 2 (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
495, 48mpd 15 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1531   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  cin 3934  wpss 3936   class class class wbr 5058  dom cdm 5549  ran crn 5550  cfv 6349  (class class class)co 7150  Fincfn 8503  Word cword 13855  Basecbs 16477  s cress 16478  Grpcgrp 18097  SubGrpcsubg 18267   pGrp cpgp 18648  Abelcabl 18901  CycGrpccyg 18990   DProd cdprd 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-rpss 7443  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-eqg 18272  df-ghm 18350  df-gim 18393  df-ga 18414  df-cntz 18441  df-oppg 18468  df-od 18650  df-gex 18651  df-pgp 18652  df-lsm 18755  df-pj1 18756  df-cmn 18902  df-abl 18903  df-cyg 18991  df-dprd 19111
This theorem is referenced by:  ablfaclem3  19203
  Copyright terms: Public domain W3C validator