MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac Structured version   Visualization version   GIF version

Theorem pgpfac 20072
Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 20068. There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b 𝐵 = (Base‘𝐺)
pgpfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
pgpfac.g (𝜑𝐺 ∈ Abel)
pgpfac.p (𝜑𝑃 pGrp 𝐺)
pgpfac.f (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
pgpfac (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Distinct variable groups:   𝐶,𝑠   𝑠,𝑟,𝐺   𝐵,𝑠
Allowed substitution hints:   𝜑(𝑠,𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑃(𝑠,𝑟)

Proof of Theorem pgpfac
Dummy variables 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 19771 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 pgpfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 19116 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
51, 2, 43syl 18 . 2 (𝜑𝐵 ∈ (SubGrp‘𝐺))
6 pgpfac.f . . 3 (𝜑𝐵 ∈ Fin)
7 eleq1 2823 . . . . . 6 (𝑡 = 𝑢 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝑢 ∈ (SubGrp‘𝐺)))
8 eqeq2 2748 . . . . . . . 8 (𝑡 = 𝑢 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑢))
98anbi2d 630 . . . . . . 7 (𝑡 = 𝑢 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
109rexbidv 3165 . . . . . 6 (𝑡 = 𝑢 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))
117, 10imbi12d 344 . . . . 5 (𝑡 = 𝑢 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
1211imbi2d 340 . . . 4 (𝑡 = 𝑢 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
13 eleq1 2823 . . . . . 6 (𝑡 = 𝐵 → (𝑡 ∈ (SubGrp‘𝐺) ↔ 𝐵 ∈ (SubGrp‘𝐺)))
14 eqeq2 2748 . . . . . . . 8 (𝑡 = 𝐵 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝐵))
1514anbi2d 630 . . . . . . 7 (𝑡 = 𝐵 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1615rexbidv 3165 . . . . . 6 (𝑡 = 𝐵 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
1713, 16imbi12d 344 . . . . 5 (𝑡 = 𝐵 → ((𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
1817imbi2d 340 . . . 4 (𝑡 = 𝐵 → ((𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))))
19 bi2.04 387 . . . . . . . . 9 ((𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2019imbi2i 336 . . . . . . . 8 ((𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
21 bi2.04 387 . . . . . . . 8 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡𝑢 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
22 bi2.04 387 . . . . . . . 8 ((𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2320, 21, 223bitr4i 303 . . . . . . 7 ((𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
2423albii 1819 . . . . . 6 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
25 df-ral 3053 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ ∀𝑡(𝑡 ∈ (SubGrp‘𝐺) → (𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))))
26 r19.21v 3166 . . . . . 6 (∀𝑡 ∈ (SubGrp‘𝐺)(𝜑 → (𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
2724, 25, 263bitr2i 299 . . . . 5 (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) ↔ (𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))))
28 pgpfac.c . . . . . . . . 9 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
291adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐺 ∈ Abel)
30 pgpfac.p . . . . . . . . . 10 (𝜑𝑃 pGrp 𝐺)
3130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑃 pGrp 𝐺)
326adantr 480 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝐵 ∈ Fin)
33 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → 𝑢 ∈ (SubGrp‘𝐺))
34 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))
35 psseq1 4070 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (𝑡𝑢𝑥𝑢))
36 eqeq2 2748 . . . . . . . . . . . . . 14 (𝑡 = 𝑥 → ((𝐺 DProd 𝑠) = 𝑡 ↔ (𝐺 DProd 𝑠) = 𝑥))
3736anbi2d 630 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3837rexbidv 3165 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡) ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
3935, 38imbi12d 344 . . . . . . . . . . 11 (𝑡 = 𝑥 → ((𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ (𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥))))
4039cbvralvw 3224 . . . . . . . . . 10 (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ↔ ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
4134, 40sylib 218 . . . . . . . . 9 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∀𝑥 ∈ (SubGrp‘𝐺)(𝑥𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑥)))
423, 28, 29, 31, 32, 33, 41pgpfaclem3 20071 . . . . . . . 8 ((𝜑 ∧ (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) ∧ 𝑢 ∈ (SubGrp‘𝐺))) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))
4342exp32 420 . . . . . . 7 (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢))))
4443a1i 11 . . . . . 6 (𝑢 ∈ Fin → (𝜑 → (∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)) → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4544a2d 29 . . . . 5 (𝑢 ∈ Fin → ((𝜑 → ∀𝑡 ∈ (SubGrp‘𝐺)(𝑡𝑢 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4627, 45biimtrid 242 . . . 4 (𝑢 ∈ Fin → (∀𝑡(𝑡𝑢 → (𝜑 → (𝑡 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑡)))) → (𝜑 → (𝑢 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑢)))))
4712, 18, 46findcard3 9295 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))))
486, 47mpcom 38 . 2 (𝜑 → (𝐵 ∈ (SubGrp‘𝐺) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)))
495, 48mpd 15 1 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  cin 3930  wpss 3932   class class class wbr 5124  dom cdm 5659  ran crn 5660  cfv 6536  (class class class)co 7410  Fincfn 8964  Word cword 14536  Basecbs 17233  s cress 17256  Grpcgrp 18921  SubGrpcsubg 19108   pGrp cpgp 19512  Abelcabl 19767  CycGrpccyg 19863   DProd cdprd 19981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-eqg 19113  df-ghm 19201  df-gim 19247  df-ga 19278  df-cntz 19305  df-oppg 19334  df-od 19514  df-gex 19515  df-pgp 19516  df-lsm 19622  df-pj1 19623  df-cmn 19768  df-abl 19769  df-cyg 19864  df-dprd 19983
This theorem is referenced by:  ablfaclem3  20075
  Copyright terms: Public domain W3C validator