Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik2 Structured version   Visualization version   GIF version

Theorem ntrneik2 41684
Description: An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik2
StepHypRef Expression
1 ntrnei.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . . . . . . . . 14 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . . . . . . . . 14 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 41668 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8629 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
76ffvelrnda 6958 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
87elpwid 4550 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
98sselda 3926 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → 𝑥𝐵)
10 biimt 361 . . . . . . . . 9 (𝑥𝐵 → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
119, 10syl 17 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
1211pm5.74da 801 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠))))
13 bi2.04 389 . . . . . . 7 ((𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠)) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1412, 13bitrdi 287 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
1514albidv 1927 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
16 dfss2 3912 . . . . 5 ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))
17 df-ral 3071 . . . . 5 (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1815, 16, 173bitr4g 314 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
193ad2antrr 723 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
20 simpr 485 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
21 simplr 766 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
221, 2, 19, 20, 21ntrneiel 41673 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
2322imbi1d 342 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2423ralbidva 3122 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2518, 24bitrd 278 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2625ralbidva 3122 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
27 ralcom 3283 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠))
2826, 27bitrdi 287 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1540   = wceq 1542  wcel 2110  wral 3066  {crab 3070  Vcvv 3431  wss 3892  𝒫 cpw 4539   class class class wbr 5079  cmpt 5162  wf 6428  cfv 6432  (class class class)co 7272  cmpo 7274  m cmap 8607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-1st 7825  df-2nd 7826  df-map 8609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator