Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik2 Structured version   Visualization version   GIF version

Theorem ntrneik2 40326
Description: An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik2
StepHypRef Expression
1 ntrnei.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . . . . . . . . 14 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . . . . . . . . 14 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 40310 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8423 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
76ffvelrnda 6849 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
87elpwid 4556 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
98sselda 3971 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → 𝑥𝐵)
10 biimt 362 . . . . . . . . 9 (𝑥𝐵 → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
119, 10syl 17 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
1211pm5.74da 800 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠))))
13 bi2.04 389 . . . . . . 7 ((𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠)) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1412, 13syl6bb 288 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
1514albidv 1914 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
16 dfss2 3959 . . . . 5 ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))
17 df-ral 3148 . . . . 5 (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1815, 16, 173bitr4g 315 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
193ad2antrr 722 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
20 simpr 485 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
21 simplr 765 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
221, 2, 19, 20, 21ntrneiel 40315 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
2322imbi1d 343 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2423ralbidva 3201 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2518, 24bitrd 280 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2625ralbidva 3201 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
27 ralcom 3359 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠))
2826, 27syl6bb 288 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1528   = wceq 1530  wcel 2107  wral 3143  {crab 3147  Vcvv 3500  wss 3940  𝒫 cpw 4542   class class class wbr 5063  cmpt 5143  wf 6350  cfv 6354  (class class class)co 7150  cmpo 7152  m cmap 8401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-map 8403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator