Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneix2 Structured version   Visualization version   GIF version

Theorem ntrneix2 43394
Description: An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneix2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneix2
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
2 elpwi 4602 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
32sselda 3975 . . . . . . . . . 10 ((𝑠 ∈ 𝒫 𝐵𝑥𝑠) → 𝑥𝐵)
4 biimt 360 . . . . . . . . . 10 (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ (𝑥𝐵𝑥 ∈ (𝐼𝑠))))
53, 4syl 17 . . . . . . . . 9 ((𝑠 ∈ 𝒫 𝐵𝑥𝑠) → (𝑥 ∈ (𝐼𝑠) ↔ (𝑥𝐵𝑥 ∈ (𝐼𝑠))))
65pm5.74da 801 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵 → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝑠 → (𝑥𝐵𝑥 ∈ (𝐼𝑠)))))
7 bi2.04 387 . . . . . . . 8 ((𝑥𝑠 → (𝑥𝐵𝑥 ∈ (𝐼𝑠))) ↔ (𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
86, 7bitrdi 287 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠)))))
98albidv 1915 . . . . . 6 (𝑠 ∈ 𝒫 𝐵 → (∀𝑥(𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠)))))
10 dfss2 3961 . . . . . 6 (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥(𝑥𝑠𝑥 ∈ (𝐼𝑠)))
11 df-ral 3054 . . . . . 6 (∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
129, 10, 113bitr4g 314 . . . . 5 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
131, 12syl 17 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
14 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
15 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
16 ntrnei.r . . . . . . . 8 (𝜑𝐼𝐹𝑁)
1716ad2antrr 723 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
18 simpr 484 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
19 simplr 766 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
2014, 15, 17, 18, 19ntrneiel 43382 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
2120imbi2d 340 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2221ralbidva 3167 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2313, 22bitrd 279 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2423ralbidva 3167 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
25 ralcom 3278 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥)))
2624, 25bitrdi 287 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  wral 3053  {crab 3424  Vcvv 3466  wss 3941  𝒫 cpw 4595   class class class wbr 5139  cmpt 5222  cfv 6534  (class class class)co 7402  cmpo 7404  m cmap 8817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-map 8819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator