Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneix2 Structured version   Visualization version   GIF version

Theorem ntrneix2 40796
Description: An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneix2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneix2
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
2 elpwi 4506 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
32sselda 3915 . . . . . . . . . 10 ((𝑠 ∈ 𝒫 𝐵𝑥𝑠) → 𝑥𝐵)
4 biimt 364 . . . . . . . . . 10 (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ (𝑥𝐵𝑥 ∈ (𝐼𝑠))))
53, 4syl 17 . . . . . . . . 9 ((𝑠 ∈ 𝒫 𝐵𝑥𝑠) → (𝑥 ∈ (𝐼𝑠) ↔ (𝑥𝐵𝑥 ∈ (𝐼𝑠))))
65pm5.74da 803 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵 → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝑠 → (𝑥𝐵𝑥 ∈ (𝐼𝑠)))))
7 bi2.04 392 . . . . . . . 8 ((𝑥𝑠 → (𝑥𝐵𝑥 ∈ (𝐼𝑠))) ↔ (𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
86, 7syl6bb 290 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠)))))
98albidv 1921 . . . . . 6 (𝑠 ∈ 𝒫 𝐵 → (∀𝑥(𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠)))))
10 dfss2 3901 . . . . . 6 (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥(𝑥𝑠𝑥 ∈ (𝐼𝑠)))
11 df-ral 3111 . . . . . 6 (∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
129, 10, 113bitr4g 317 . . . . 5 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
131, 12syl 17 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
14 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
15 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
16 ntrnei.r . . . . . . . 8 (𝜑𝐼𝐹𝑁)
1716ad2antrr 725 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
18 simpr 488 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
19 simplr 768 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
2014, 15, 17, 18, 19ntrneiel 40784 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
2120imbi2d 344 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2221ralbidva 3161 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2313, 22bitrd 282 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2423ralbidva 3161 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
25 ralcom 3307 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥)))
2624, 25syl6bb 290 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  wss 3881  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator