Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneix2 Structured version   Visualization version   GIF version

Theorem ntrneix2 44075
Description: An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneix2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneix2
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
2 elpwi 4566 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
32sselda 3943 . . . . . . . . . 10 ((𝑠 ∈ 𝒫 𝐵𝑥𝑠) → 𝑥𝐵)
4 biimt 360 . . . . . . . . . 10 (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ (𝑥𝐵𝑥 ∈ (𝐼𝑠))))
53, 4syl 17 . . . . . . . . 9 ((𝑠 ∈ 𝒫 𝐵𝑥𝑠) → (𝑥 ∈ (𝐼𝑠) ↔ (𝑥𝐵𝑥 ∈ (𝐼𝑠))))
65pm5.74da 803 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵 → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝑠 → (𝑥𝐵𝑥 ∈ (𝐼𝑠)))))
7 bi2.04 387 . . . . . . . 8 ((𝑥𝑠 → (𝑥𝐵𝑥 ∈ (𝐼𝑠))) ↔ (𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
86, 7bitrdi 287 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠)))))
98albidv 1920 . . . . . 6 (𝑠 ∈ 𝒫 𝐵 → (∀𝑥(𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠)))))
10 df-ss 3928 . . . . . 6 (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥(𝑥𝑠𝑥 ∈ (𝐼𝑠)))
11 df-ral 3045 . . . . . 6 (∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
129, 10, 113bitr4g 314 . . . . 5 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
131, 12syl 17 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠))))
14 ntrnei.o . . . . . . 7 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
15 ntrnei.f . . . . . . 7 𝐹 = (𝒫 𝐵𝑂𝐵)
16 ntrnei.r . . . . . . . 8 (𝜑𝐼𝐹𝑁)
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
18 simpr 484 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
19 simplr 768 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
2014, 15, 17, 18, 19ntrneiel 44063 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
2120imbi2d 340 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2221ralbidva 3154 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥𝑠𝑥 ∈ (𝐼𝑠)) ↔ ∀𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2313, 22bitrd 279 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
2423ralbidva 3154 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥))))
25 ralcom 3263 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑥𝑠𝑠 ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥)))
2624, 25bitrdi 287 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator