Proof of Theorem ntrneix2
Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
2 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝒫 𝐵 → 𝑠 ⊆ 𝐵) |
3 | 2 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ 𝒫 𝐵 ∧ 𝑥 ∈ 𝑠) → 𝑥 ∈ 𝐵) |
4 | | biimt 360 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ (𝐼‘𝑠) ↔ (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐼‘𝑠)))) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ ((𝑠 ∈ 𝒫 𝐵 ∧ 𝑥 ∈ 𝑠) → (𝑥 ∈ (𝐼‘𝑠) ↔ (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐼‘𝑠)))) |
6 | 5 | pm5.74da 800 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝒫 𝐵 → ((𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)) ↔ (𝑥 ∈ 𝑠 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐼‘𝑠))))) |
7 | | bi2.04 388 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑠 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐼‘𝑠))) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)))) |
8 | 6, 7 | bitrdi 286 |
. . . . . . 7
⊢ (𝑠 ∈ 𝒫 𝐵 → ((𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠))))) |
9 | 8 | albidv 1924 |
. . . . . 6
⊢ (𝑠 ∈ 𝒫 𝐵 → (∀𝑥(𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠))))) |
10 | | dfss2 3903 |
. . . . . 6
⊢ (𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥(𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠))) |
11 | | df-ral 3068 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)))) |
12 | 9, 10, 11 | 3bitr4g 313 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 𝐵 → (𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)))) |
13 | 1, 12 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)))) |
14 | | ntrnei.o |
. . . . . . 7
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
15 | | ntrnei.f |
. . . . . . 7
⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
16 | | ntrnei.r |
. . . . . . . 8
⊢ (𝜑 → 𝐼𝐹𝑁) |
17 | 16 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
18 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
19 | | simplr 765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
20 | 14, 15, 17, 18, 19 | ntrneiel 41580 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑥))) |
21 | 20 | imbi2d 340 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)) ↔ (𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) |
22 | 21 | ralbidva 3119 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝑠 → 𝑥 ∈ (𝐼‘𝑠)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) |
23 | 13, 22 | bitrd 278 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) |
24 | 23 | ralbidva 3119 |
. 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) |
25 | | ralcom 3280 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥))) |
26 | 24, 25 | bitrdi 286 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) |