Step | Hyp | Ref
| Expression |
1 | | hdmapglem6.h |
. . . 4
β’ π» = (LHypβπΎ) |
2 | | hdmapglem6.o |
. . . 4
β’ π = ((ocHβπΎ)βπ) |
3 | | hdmapglem6.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
4 | | hdmapglem6.v |
. . . 4
β’ π = (Baseβπ) |
5 | | eqid 2732 |
. . . 4
β’
(0gβπ) = (0gβπ) |
6 | | hdmapglem6.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
7 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
8 | | eqid 2732 |
. . . . . 6
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
9 | | hdmapglem6.e |
. . . . . 6
β’ πΈ = β¨( I βΎ
(BaseβπΎ)), ( I
βΎ ((LTrnβπΎ)βπ))β© |
10 | 1, 7, 8, 3, 4, 5, 9, 6 | dvheveccl 39971 |
. . . . 5
β’ (π β πΈ β (π β {(0gβπ)})) |
11 | 10 | eldifad 3959 |
. . . 4
β’ (π β πΈ β π) |
12 | 1, 2, 3, 4, 5, 6, 11 | dochsnnz 40309 |
. . 3
β’ (π β (πβ{πΈ}) β {(0gβπ)}) |
13 | 11 | snssd 4811 |
. . . . 5
β’ (π β {πΈ} β π) |
14 | | eqid 2732 |
. . . . . 6
β’
(LSubSpβπ) =
(LSubSpβπ) |
15 | 1, 3, 4, 14, 2 | dochlss 40213 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ {πΈ} β π) β (πβ{πΈ}) β (LSubSpβπ)) |
16 | 6, 13, 15 | syl2anc 584 |
. . . 4
β’ (π β (πβ{πΈ}) β (LSubSpβπ)) |
17 | 5, 14 | lssne0 20553 |
. . . 4
β’ ((πβ{πΈ}) β (LSubSpβπ) β ((πβ{πΈ}) β {(0gβπ)} β βπ β (πβ{πΈ})π β (0gβπ))) |
18 | 16, 17 | syl 17 |
. . 3
β’ (π β ((πβ{πΈ}) β {(0gβπ)} β βπ β (πβ{πΈ})π β (0gβπ))) |
19 | 12, 18 | mpbid 231 |
. 2
β’ (π β βπ β (πβ{πΈ})π β (0gβπ)) |
20 | | eqid 2732 |
. . . . 5
β’ (
Β·π βπ) = ( Β·π
βπ) |
21 | | hdmapglem6.r |
. . . . 5
β’ π
= (Scalarβπ) |
22 | | hdmapglem6.i |
. . . . 5
β’ 1 =
(1rβπ
) |
23 | | hdmapglem6.n |
. . . . 5
β’ π = (invrβπ
) |
24 | | hdmapglem6.s |
. . . . 5
β’ π = ((HDMapβπΎ)βπ) |
25 | 6 | 3ad2ant1 1133 |
. . . . 5
β’ ((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β (πΎ β HL β§ π β π»)) |
26 | 1, 3, 4, 2 | dochssv 40214 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ {πΈ} β π) β (πβ{πΈ}) β π) |
27 | 6, 13, 26 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πβ{πΈ}) β π) |
28 | 27 | sselda 3981 |
. . . . . . 7
β’ ((π β§ π β (πβ{πΈ})) β π β π) |
29 | 28 | 3adant3 1132 |
. . . . . 6
β’ ((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β π β π) |
30 | | simp3 1138 |
. . . . . 6
β’ ((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β π β (0gβπ)) |
31 | | eldifsn 4789 |
. . . . . 6
β’ (π β (π β {(0gβπ)}) β (π β π β§ π β (0gβπ))) |
32 | 29, 30, 31 | sylanbrc 583 |
. . . . 5
β’ ((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β π β (π β {(0gβπ)})) |
33 | | eqid 2732 |
. . . . 5
β’ ((πβ((πβπ)βπ))( Β·π
βπ)π) = ((πβ((πβπ)βπ))( Β·π
βπ)π) |
34 | 1, 3, 4, 20, 5, 21, 22, 23, 24, 25, 32, 33 | hdmapip1 40775 |
. . . 4
β’ ((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) |
35 | | hdmapglem6.q |
. . . . 5
β’ Β· = (
Β·π βπ) |
36 | | hdmapglem6.b |
. . . . 5
β’ π΅ = (Baseβπ
) |
37 | | hdmapglem6.t |
. . . . 5
β’ Γ =
(.rβπ
) |
38 | | hdmapglem6.z |
. . . . 5
β’ 0 =
(0gβπ
) |
39 | | hdmapglem6.g |
. . . . 5
β’ πΊ = ((HGMapβπΎ)βπ) |
40 | | simpl1 1191 |
. . . . . 6
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β π) |
41 | 40, 6 | syl 17 |
. . . . 5
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β (πΎ β HL β§ π β π»)) |
42 | | hdmapglem6.x |
. . . . . 6
β’ (π β π β (π΅ β { 0 })) |
43 | 40, 42 | syl 17 |
. . . . 5
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β π β (π΅ β { 0 })) |
44 | 1, 3, 6 | dvhlmod 39969 |
. . . . . . 7
β’ (π β π β LMod) |
45 | 40, 44 | syl 17 |
. . . . . 6
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β π β LMod) |
46 | 40, 16 | syl 17 |
. . . . . 6
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β (πβ{πΈ}) β (LSubSpβπ)) |
47 | 1, 3, 6 | dvhlvec 39968 |
. . . . . . . . 9
β’ (π β π β LVec) |
48 | 21 | lvecdrng 20708 |
. . . . . . . . 9
β’ (π β LVec β π
β
DivRing) |
49 | 47, 48 | syl 17 |
. . . . . . . 8
β’ (π β π
β DivRing) |
50 | 40, 49 | syl 17 |
. . . . . . 7
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β π
β DivRing) |
51 | 29 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β π β π) |
52 | 1, 3, 4, 21, 36, 24, 41, 51, 51 | hdmapipcl 40764 |
. . . . . . 7
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β ((πβπ)βπ) β π΅) |
53 | 6 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β (πβ{πΈ})) β (πΎ β HL β§ π β π»)) |
54 | 1, 3, 4, 5, 21, 38, 24, 53, 28 | hdmapip0 40774 |
. . . . . . . . . 10
β’ ((π β§ π β (πβ{πΈ})) β (((πβπ)βπ) = 0 β π = (0gβπ))) |
55 | 54 | necon3bid 2985 |
. . . . . . . . 9
β’ ((π β§ π β (πβ{πΈ})) β (((πβπ)βπ) β 0 β π β (0gβπ))) |
56 | 55 | biimp3ar 1470 |
. . . . . . . 8
β’ ((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β ((πβπ)βπ) β 0 ) |
57 | 56 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β ((πβπ)βπ) β 0 ) |
58 | 36, 38, 23 | drnginvrcl 20329 |
. . . . . . 7
β’ ((π
β DivRing β§ ((πβπ)βπ) β π΅ β§ ((πβπ)βπ) β 0 ) β (πβ((πβπ)βπ)) β π΅) |
59 | 50, 52, 57, 58 | syl3anc 1371 |
. . . . . 6
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β (πβ((πβπ)βπ)) β π΅) |
60 | | simpl2 1192 |
. . . . . 6
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β π β (πβ{πΈ})) |
61 | 21, 20, 36, 14 | lssvscl 20558 |
. . . . . 6
β’ (((π β LMod β§ (πβ{πΈ}) β (LSubSpβπ)) β§ ((πβ((πβπ)βπ)) β π΅ β§ π β (πβ{πΈ}))) β ((πβ((πβπ)βπ))( Β·π
βπ)π) β (πβ{πΈ})) |
62 | 45, 46, 59, 60, 61 | syl22anc 837 |
. . . . 5
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β ((πβ((πβπ)βπ))( Β·π
βπ)π) β (πβ{πΈ})) |
63 | | simpr 485 |
. . . . 5
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) |
64 | 1, 9, 2, 3, 4, 35,
21, 36, 37, 38, 22, 23, 24, 39, 41, 43, 62, 60, 63 | hgmapvvlem2 40783 |
. . . 4
β’ (((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β§ ((πβπ)β((πβ((πβπ)βπ))( Β·π
βπ)π)) = 1 ) β (πΊβ(πΊβπ)) = π) |
65 | 34, 64 | mpdan 685 |
. . 3
β’ ((π β§ π β (πβ{πΈ}) β§ π β (0gβπ)) β (πΊβ(πΊβπ)) = π) |
66 | 65 | rexlimdv3a 3159 |
. 2
β’ (π β (βπ β (πβ{πΈ})π β (0gβπ) β (πΊβ(πΊβπ)) = π)) |
67 | 19, 66 | mpd 15 |
1
β’ (π β (πΊβ(πΊβπ)) = π) |