| Step | Hyp | Ref
| Expression |
| 1 | | hdmapglem6.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | hdmapglem6.o |
. . . 4
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| 3 | | hdmapglem6.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 4 | | hdmapglem6.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
| 5 | | eqid 2737 |
. . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 6 | | hdmapglem6.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 8 | | eqid 2737 |
. . . . . 6
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 9 | | hdmapglem6.e |
. . . . . 6
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
| 10 | 1, 7, 8, 3, 4, 5, 9, 6 | dvheveccl 41114 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 11 | 10 | eldifad 3963 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 12 | 1, 2, 3, 4, 5, 6, 11 | dochsnnz 41452 |
. . 3
⊢ (𝜑 → (𝑂‘{𝐸}) ≠ {(0g‘𝑈)}) |
| 13 | 11 | snssd 4809 |
. . . . 5
⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
| 14 | | eqid 2737 |
. . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 15 | 1, 3, 4, 14, 2 | dochlss 41356 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 16 | 6, 13, 15 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 17 | 5, 14 | lssne0 20949 |
. . . 4
⊢ ((𝑂‘{𝐸}) ∈ (LSubSp‘𝑈) → ((𝑂‘{𝐸}) ≠ {(0g‘𝑈)} ↔ ∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈))) |
| 18 | 16, 17 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑂‘{𝐸}) ≠ {(0g‘𝑈)} ↔ ∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈))) |
| 19 | 12, 18 | mpbid 232 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈)) |
| 20 | | eqid 2737 |
. . . . 5
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
| 21 | | hdmapglem6.r |
. . . . 5
⊢ 𝑅 = (Scalar‘𝑈) |
| 22 | | hdmapglem6.i |
. . . . 5
⊢ 1 =
(1r‘𝑅) |
| 23 | | hdmapglem6.n |
. . . . 5
⊢ 𝑁 = (invr‘𝑅) |
| 24 | | hdmapglem6.s |
. . . . 5
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| 25 | 6 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 26 | 1, 3, 4, 2 | dochssv 41357 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
| 27 | 6, 13, 26 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
| 28 | 27 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → 𝑘 ∈ 𝑉) |
| 29 | 28 | 3adant3 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → 𝑘 ∈ 𝑉) |
| 30 | | simp3 1139 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → 𝑘 ≠ (0g‘𝑈)) |
| 31 | | eldifsn 4786 |
. . . . . 6
⊢ (𝑘 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑘 ∈ 𝑉 ∧ 𝑘 ≠ (0g‘𝑈))) |
| 32 | 29, 30, 31 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → 𝑘 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 33 | | eqid 2737 |
. . . . 5
⊢ ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) = ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) |
| 34 | 1, 3, 4, 20, 5, 21, 22, 23, 24, 25, 32, 33 | hdmapip1 41918 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) |
| 35 | | hdmapglem6.q |
. . . . 5
⊢ · = (
·𝑠 ‘𝑈) |
| 36 | | hdmapglem6.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 37 | | hdmapglem6.t |
. . . . 5
⊢ × =
(.r‘𝑅) |
| 38 | | hdmapglem6.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
| 39 | | hdmapglem6.g |
. . . . 5
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| 40 | | simpl1 1192 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝜑) |
| 41 | 40, 6 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 42 | | hdmapglem6.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| 43 | 40, 42 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| 44 | 1, 3, 6 | dvhlmod 41112 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 45 | 40, 44 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑈 ∈ LMod) |
| 46 | 40, 16 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 47 | 1, 3, 6 | dvhlvec 41111 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 48 | 21 | lvecdrng 21104 |
. . . . . . . . 9
⊢ (𝑈 ∈ LVec → 𝑅 ∈
DivRing) |
| 49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 50 | 40, 49 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑅 ∈ DivRing) |
| 51 | 29 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑘 ∈ 𝑉) |
| 52 | 1, 3, 4, 21, 36, 24, 41, 51, 51 | hdmapipcl 41907 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑆‘𝑘)‘𝑘) ∈ 𝐵) |
| 53 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 54 | 1, 3, 4, 5, 21, 38, 24, 53, 28 | hdmapip0 41917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → (((𝑆‘𝑘)‘𝑘) = 0 ↔ 𝑘 = (0g‘𝑈))) |
| 55 | 54 | necon3bid 2985 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → (((𝑆‘𝑘)‘𝑘) ≠ 0 ↔ 𝑘 ≠ (0g‘𝑈))) |
| 56 | 55 | biimp3ar 1472 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → ((𝑆‘𝑘)‘𝑘) ≠ 0 ) |
| 57 | 56 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑆‘𝑘)‘𝑘) ≠ 0 ) |
| 58 | 36, 38, 23 | drnginvrcl 20753 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ ((𝑆‘𝑘)‘𝑘) ∈ 𝐵 ∧ ((𝑆‘𝑘)‘𝑘) ≠ 0 ) → (𝑁‘((𝑆‘𝑘)‘𝑘)) ∈ 𝐵) |
| 59 | 50, 52, 57, 58 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝑁‘((𝑆‘𝑘)‘𝑘)) ∈ 𝐵) |
| 60 | | simpl2 1193 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑘 ∈ (𝑂‘{𝐸})) |
| 61 | 21, 20, 36, 14 | lssvscl 20953 |
. . . . . 6
⊢ (((𝑈 ∈ LMod ∧ (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) ∧ ((𝑁‘((𝑆‘𝑘)‘𝑘)) ∈ 𝐵 ∧ 𝑘 ∈ (𝑂‘{𝐸}))) → ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) ∈ (𝑂‘{𝐸})) |
| 62 | 45, 46, 59, 60, 61 | syl22anc 839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) ∈ (𝑂‘{𝐸})) |
| 63 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) |
| 64 | 1, 9, 2, 3, 4, 35,
21, 36, 37, 38, 22, 23, 24, 39, 41, 43, 62, 60, 63 | hgmapvvlem2 41926 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
| 65 | 34, 64 | mpdan 687 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
| 66 | 65 | rexlimdv3a 3159 |
. 2
⊢ (𝜑 → (∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈) → (𝐺‘(𝐺‘𝑋)) = 𝑋)) |
| 67 | 19, 66 | mpd 15 |
1
⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |