Step | Hyp | Ref
| Expression |
1 | | hdmapglem6.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmapglem6.o |
. . . 4
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
3 | | hdmapglem6.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
4 | | hdmapglem6.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
5 | | eqid 2758 |
. . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) |
6 | | hdmapglem6.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
7 | | eqid 2758 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | eqid 2758 |
. . . . . 6
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
9 | | hdmapglem6.e |
. . . . . 6
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
10 | 1, 7, 8, 3, 4, 5, 9, 6 | dvheveccl 38688 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
11 | 10 | eldifad 3870 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
12 | 1, 2, 3, 4, 5, 6, 11 | dochsnnz 39026 |
. . 3
⊢ (𝜑 → (𝑂‘{𝐸}) ≠ {(0g‘𝑈)}) |
13 | 11 | snssd 4699 |
. . . . 5
⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
14 | | eqid 2758 |
. . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
15 | 1, 3, 4, 14, 2 | dochlss 38930 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
16 | 6, 13, 15 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
17 | 5, 14 | lssne0 19790 |
. . . 4
⊢ ((𝑂‘{𝐸}) ∈ (LSubSp‘𝑈) → ((𝑂‘{𝐸}) ≠ {(0g‘𝑈)} ↔ ∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈))) |
18 | 16, 17 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑂‘{𝐸}) ≠ {(0g‘𝑈)} ↔ ∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈))) |
19 | 12, 18 | mpbid 235 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈)) |
20 | | eqid 2758 |
. . . . 5
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
21 | | hdmapglem6.r |
. . . . 5
⊢ 𝑅 = (Scalar‘𝑈) |
22 | | hdmapglem6.i |
. . . . 5
⊢ 1 =
(1r‘𝑅) |
23 | | hdmapglem6.n |
. . . . 5
⊢ 𝑁 = (invr‘𝑅) |
24 | | hdmapglem6.s |
. . . . 5
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
25 | 6 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
26 | 1, 3, 4, 2 | dochssv 38931 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
27 | 6, 13, 26 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
28 | 27 | sselda 3892 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → 𝑘 ∈ 𝑉) |
29 | 28 | 3adant3 1129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → 𝑘 ∈ 𝑉) |
30 | | simp3 1135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → 𝑘 ≠ (0g‘𝑈)) |
31 | | eldifsn 4677 |
. . . . . 6
⊢ (𝑘 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑘 ∈ 𝑉 ∧ 𝑘 ≠ (0g‘𝑈))) |
32 | 29, 30, 31 | sylanbrc 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → 𝑘 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
33 | | eqid 2758 |
. . . . 5
⊢ ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) = ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) |
34 | 1, 3, 4, 20, 5, 21, 22, 23, 24, 25, 32, 33 | hdmapip1 39492 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) |
35 | | hdmapglem6.q |
. . . . 5
⊢ · = (
·𝑠 ‘𝑈) |
36 | | hdmapglem6.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
37 | | hdmapglem6.t |
. . . . 5
⊢ × =
(.r‘𝑅) |
38 | | hdmapglem6.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
39 | | hdmapglem6.g |
. . . . 5
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
40 | | simpl1 1188 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝜑) |
41 | 40, 6 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
42 | | hdmapglem6.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
43 | 40, 42 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑋 ∈ (𝐵 ∖ { 0 })) |
44 | 1, 3, 6 | dvhlmod 38686 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LMod) |
45 | 40, 44 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑈 ∈ LMod) |
46 | 40, 16 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
47 | 1, 3, 6 | dvhlvec 38685 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LVec) |
48 | 21 | lvecdrng 19945 |
. . . . . . . . 9
⊢ (𝑈 ∈ LVec → 𝑅 ∈
DivRing) |
49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ DivRing) |
50 | 40, 49 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑅 ∈ DivRing) |
51 | 29 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑘 ∈ 𝑉) |
52 | 1, 3, 4, 21, 36, 24, 41, 51, 51 | hdmapipcl 39481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑆‘𝑘)‘𝑘) ∈ 𝐵) |
53 | 6 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
54 | 1, 3, 4, 5, 21, 38, 24, 53, 28 | hdmapip0 39491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → (((𝑆‘𝑘)‘𝑘) = 0 ↔ 𝑘 = (0g‘𝑈))) |
55 | 54 | necon3bid 2995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸})) → (((𝑆‘𝑘)‘𝑘) ≠ 0 ↔ 𝑘 ≠ (0g‘𝑈))) |
56 | 55 | biimp3ar 1467 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → ((𝑆‘𝑘)‘𝑘) ≠ 0 ) |
57 | 56 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑆‘𝑘)‘𝑘) ≠ 0 ) |
58 | 36, 38, 23 | drnginvrcl 19587 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ ((𝑆‘𝑘)‘𝑘) ∈ 𝐵 ∧ ((𝑆‘𝑘)‘𝑘) ≠ 0 ) → (𝑁‘((𝑆‘𝑘)‘𝑘)) ∈ 𝐵) |
59 | 50, 52, 57, 58 | syl3anc 1368 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝑁‘((𝑆‘𝑘)‘𝑘)) ∈ 𝐵) |
60 | | simpl2 1189 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → 𝑘 ∈ (𝑂‘{𝐸})) |
61 | 21, 20, 36, 14 | lssvscl 19795 |
. . . . . 6
⊢ (((𝑈 ∈ LMod ∧ (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) ∧ ((𝑁‘((𝑆‘𝑘)‘𝑘)) ∈ 𝐵 ∧ 𝑘 ∈ (𝑂‘{𝐸}))) → ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) ∈ (𝑂‘{𝐸})) |
62 | 45, 46, 59, 60, 61 | syl22anc 837 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘) ∈ (𝑂‘{𝐸})) |
63 | | simpr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) |
64 | 1, 9, 2, 3, 4, 35,
21, 36, 37, 38, 22, 23, 24, 39, 41, 43, 62, 60, 63 | hgmapvvlem2 39500 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) ∧ ((𝑆‘𝑘)‘((𝑁‘((𝑆‘𝑘)‘𝑘))( ·𝑠
‘𝑈)𝑘)) = 1 ) → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
65 | 34, 64 | mpdan 686 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑂‘{𝐸}) ∧ 𝑘 ≠ (0g‘𝑈)) → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
66 | 65 | rexlimdv3a 3210 |
. 2
⊢ (𝜑 → (∃𝑘 ∈ (𝑂‘{𝐸})𝑘 ≠ (0g‘𝑈) → (𝐺‘(𝐺‘𝑋)) = 𝑋)) |
67 | 19, 66 | mpd 15 |
1
⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |