Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidreslem Structured version   Visualization version   GIF version

Theorem exidreslem 37864
Description: Lemma for exidres 37865 and exidresid 37866. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidreslem ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑌   𝑥,𝑋   𝑥,𝑈   𝑥,𝐻

Proof of Theorem exidreslem
StepHypRef Expression
1 exidres.3 . . . . . . . 8 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
21dmeqi 5918 . . . . . . 7 dom 𝐻 = dom (𝐺 ↾ (𝑌 × 𝑌))
3 xpss12 5704 . . . . . . . . . . 11 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
43anidms 566 . . . . . . . . . 10 (𝑌𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
5 exidres.1 . . . . . . . . . . . . 13 𝑋 = ran 𝐺
65opidon2OLD 37841 . . . . . . . . . . . 12 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
7 fof 6821 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
8 fdm 6746 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
96, 7, 83syl 18 . . . . . . . . . . 11 (𝐺 ∈ (Magma ∩ ExId ) → dom 𝐺 = (𝑋 × 𝑋))
109sseq2d 4028 . . . . . . . . . 10 (𝐺 ∈ (Magma ∩ ExId ) → ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)))
114, 10imbitrrid 246 . . . . . . . . 9 (𝐺 ∈ (Magma ∩ ExId ) → (𝑌𝑋 → (𝑌 × 𝑌) ⊆ dom 𝐺))
1211imp 406 . . . . . . . 8 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑌 × 𝑌) ⊆ dom 𝐺)
13 ssdmres 6033 . . . . . . . 8 ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
1412, 13sylib 218 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
152, 14eqtrid 2787 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom 𝐻 = (𝑌 × 𝑌))
1615dmeqd 5919 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = dom (𝑌 × 𝑌))
17 dmxpid 5944 . . . . 5 dom (𝑌 × 𝑌) = 𝑌
1816, 17eqtrdi 2791 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = 𝑌)
1918eleq2d 2825 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑈 ∈ dom dom 𝐻𝑈𝑌))
2019biimp3ar 1469 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
21 ssel2 3990 . . . . . . . . . 10 ((𝑌𝑋𝑥𝑌) → 𝑥𝑋)
22 exidres.2 . . . . . . . . . . 11 𝑈 = (GId‘𝐺)
235, 22cmpidelt 37846 . . . . . . . . . 10 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑥𝑋) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2421, 23sylan2 593 . . . . . . . . 9 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝑌𝑋𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2524anassrs 467 . . . . . . . 8 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2625adantrl 716 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
271oveqi 7444 . . . . . . . . . . 11 (𝑈𝐻𝑥) = (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥)
28 ovres 7599 . . . . . . . . . . 11 ((𝑈𝑌𝑥𝑌) → (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥) = (𝑈𝐺𝑥))
2927, 28eqtrid 2787 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑈𝐻𝑥) = (𝑈𝐺𝑥))
3029eqeq1d 2737 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
311oveqi 7444 . . . . . . . . . . . 12 (𝑥𝐻𝑈) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈)
32 ovres 7599 . . . . . . . . . . . 12 ((𝑥𝑌𝑈𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈) = (𝑥𝐺𝑈))
3331, 32eqtrid 2787 . . . . . . . . . . 11 ((𝑥𝑌𝑈𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3433ancoms 458 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3534eqeq1d 2737 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑥𝐻𝑈) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥))
3630, 35anbi12d 632 . . . . . . . 8 ((𝑈𝑌𝑥𝑌) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3736adantl 481 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3826, 37mpbird 257 . . . . . 6 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
3938anassrs 467 . . . . 5 ((((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) ∧ 𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4039ralrimiva 3144 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
41403impa 1109 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
42123adant3 1131 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑌 × 𝑌) ⊆ dom 𝐺)
4342, 13sylib 218 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
442, 43eqtrid 2787 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom 𝐻 = (𝑌 × 𝑌))
4544dmeqd 5919 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = dom (𝑌 × 𝑌))
4645, 17eqtrdi 2791 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = 𝑌)
4741, 46raleqtrrdv 3328 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4820, 47jca 511 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cin 3962  wss 3963   × cxp 5687  dom cdm 5689  ran crn 5690  cres 5691  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  GIdcgi 30519   ExId cexid 37831  Magmacmagm 37835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-ov 7434  df-gid 30523  df-exid 37832  df-mgmOLD 37836
This theorem is referenced by:  exidres  37865  exidresid  37866
  Copyright terms: Public domain W3C validator