Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidreslem Structured version   Visualization version   GIF version

Theorem exidreslem 36035
Description: Lemma for exidres 36036 and exidresid 36037. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidreslem ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑌   𝑥,𝑋   𝑥,𝑈   𝑥,𝐻

Proof of Theorem exidreslem
StepHypRef Expression
1 exidres.3 . . . . . . . 8 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
21dmeqi 5813 . . . . . . 7 dom 𝐻 = dom (𝐺 ↾ (𝑌 × 𝑌))
3 xpss12 5604 . . . . . . . . . . 11 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
43anidms 567 . . . . . . . . . 10 (𝑌𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
5 exidres.1 . . . . . . . . . . . . 13 𝑋 = ran 𝐺
65opidon2OLD 36012 . . . . . . . . . . . 12 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
7 fof 6688 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
8 fdm 6609 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
96, 7, 83syl 18 . . . . . . . . . . 11 (𝐺 ∈ (Magma ∩ ExId ) → dom 𝐺 = (𝑋 × 𝑋))
109sseq2d 3953 . . . . . . . . . 10 (𝐺 ∈ (Magma ∩ ExId ) → ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)))
114, 10syl5ibr 245 . . . . . . . . 9 (𝐺 ∈ (Magma ∩ ExId ) → (𝑌𝑋 → (𝑌 × 𝑌) ⊆ dom 𝐺))
1211imp 407 . . . . . . . 8 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑌 × 𝑌) ⊆ dom 𝐺)
13 ssdmres 5914 . . . . . . . 8 ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
1412, 13sylib 217 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
152, 14eqtrid 2790 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom 𝐻 = (𝑌 × 𝑌))
1615dmeqd 5814 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = dom (𝑌 × 𝑌))
17 dmxpid 5839 . . . . 5 dom (𝑌 × 𝑌) = 𝑌
1816, 17eqtrdi 2794 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = 𝑌)
1918eleq2d 2824 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑈 ∈ dom dom 𝐻𝑈𝑌))
2019biimp3ar 1469 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
21 ssel2 3916 . . . . . . . . . 10 ((𝑌𝑋𝑥𝑌) → 𝑥𝑋)
22 exidres.2 . . . . . . . . . . 11 𝑈 = (GId‘𝐺)
235, 22cmpidelt 36017 . . . . . . . . . 10 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑥𝑋) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2421, 23sylan2 593 . . . . . . . . 9 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝑌𝑋𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2524anassrs 468 . . . . . . . 8 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2625adantrl 713 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
271oveqi 7288 . . . . . . . . . . 11 (𝑈𝐻𝑥) = (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥)
28 ovres 7438 . . . . . . . . . . 11 ((𝑈𝑌𝑥𝑌) → (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥) = (𝑈𝐺𝑥))
2927, 28eqtrid 2790 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑈𝐻𝑥) = (𝑈𝐺𝑥))
3029eqeq1d 2740 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
311oveqi 7288 . . . . . . . . . . . 12 (𝑥𝐻𝑈) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈)
32 ovres 7438 . . . . . . . . . . . 12 ((𝑥𝑌𝑈𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈) = (𝑥𝐺𝑈))
3331, 32eqtrid 2790 . . . . . . . . . . 11 ((𝑥𝑌𝑈𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3433ancoms 459 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3534eqeq1d 2740 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑥𝐻𝑈) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥))
3630, 35anbi12d 631 . . . . . . . 8 ((𝑈𝑌𝑥𝑌) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3736adantl 482 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3826, 37mpbird 256 . . . . . 6 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
3938anassrs 468 . . . . 5 ((((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) ∧ 𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4039ralrimiva 3103 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
41403impa 1109 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
42123adant3 1131 . . . . . . . 8 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑌 × 𝑌) ⊆ dom 𝐺)
4342, 13sylib 217 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
442, 43eqtrid 2790 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom 𝐻 = (𝑌 × 𝑌))
4544dmeqd 5814 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = dom (𝑌 × 𝑌))
4645, 17eqtrdi 2794 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = 𝑌)
4746raleqdv 3348 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
4841, 47mpbird 256 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4920, 48jca 512 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cin 3886  wss 3887   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  GIdcgi 28852   ExId cexid 36002  Magmacmagm 36006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-riota 7232  df-ov 7278  df-gid 28856  df-exid 36003  df-mgmOLD 36007
This theorem is referenced by:  exidres  36036  exidresid  36037
  Copyright terms: Public domain W3C validator