Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidreslem Structured version   Visualization version   GIF version

Theorem exidreslem 36733
Description: Lemma for exidres 36734 and exidresid 36735. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidreslem ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑌   𝑥,𝑋   𝑥,𝑈   𝑥,𝐻

Proof of Theorem exidreslem
StepHypRef Expression
1 exidres.3 . . . . . . . 8 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
21dmeqi 5902 . . . . . . 7 dom 𝐻 = dom (𝐺 ↾ (𝑌 × 𝑌))
3 xpss12 5690 . . . . . . . . . . 11 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
43anidms 567 . . . . . . . . . 10 (𝑌𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
5 exidres.1 . . . . . . . . . . . . 13 𝑋 = ran 𝐺
65opidon2OLD 36710 . . . . . . . . . . . 12 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
7 fof 6802 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
8 fdm 6723 . . . . . . . . . . . 12 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
96, 7, 83syl 18 . . . . . . . . . . 11 (𝐺 ∈ (Magma ∩ ExId ) → dom 𝐺 = (𝑋 × 𝑋))
109sseq2d 4013 . . . . . . . . . 10 (𝐺 ∈ (Magma ∩ ExId ) → ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)))
114, 10imbitrrid 245 . . . . . . . . 9 (𝐺 ∈ (Magma ∩ ExId ) → (𝑌𝑋 → (𝑌 × 𝑌) ⊆ dom 𝐺))
1211imp 407 . . . . . . . 8 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑌 × 𝑌) ⊆ dom 𝐺)
13 ssdmres 6002 . . . . . . . 8 ((𝑌 × 𝑌) ⊆ dom 𝐺 ↔ dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
1412, 13sylib 217 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
152, 14eqtrid 2784 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom 𝐻 = (𝑌 × 𝑌))
1615dmeqd 5903 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = dom (𝑌 × 𝑌))
17 dmxpid 5927 . . . . 5 dom (𝑌 × 𝑌) = 𝑌
1816, 17eqtrdi 2788 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → dom dom 𝐻 = 𝑌)
1918eleq2d 2819 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) → (𝑈 ∈ dom dom 𝐻𝑈𝑌))
2019biimp3ar 1470 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
21 ssel2 3976 . . . . . . . . . 10 ((𝑌𝑋𝑥𝑌) → 𝑥𝑋)
22 exidres.2 . . . . . . . . . . 11 𝑈 = (GId‘𝐺)
235, 22cmpidelt 36715 . . . . . . . . . 10 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑥𝑋) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2421, 23sylan2 593 . . . . . . . . 9 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝑌𝑋𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2524anassrs 468 . . . . . . . 8 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
2625adantrl 714 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))
271oveqi 7418 . . . . . . . . . . 11 (𝑈𝐻𝑥) = (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥)
28 ovres 7569 . . . . . . . . . . 11 ((𝑈𝑌𝑥𝑌) → (𝑈(𝐺 ↾ (𝑌 × 𝑌))𝑥) = (𝑈𝐺𝑥))
2927, 28eqtrid 2784 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑈𝐻𝑥) = (𝑈𝐺𝑥))
3029eqeq1d 2734 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
311oveqi 7418 . . . . . . . . . . . 12 (𝑥𝐻𝑈) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈)
32 ovres 7569 . . . . . . . . . . . 12 ((𝑥𝑌𝑈𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑈) = (𝑥𝐺𝑈))
3331, 32eqtrid 2784 . . . . . . . . . . 11 ((𝑥𝑌𝑈𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3433ancoms 459 . . . . . . . . . 10 ((𝑈𝑌𝑥𝑌) → (𝑥𝐻𝑈) = (𝑥𝐺𝑈))
3534eqeq1d 2734 . . . . . . . . 9 ((𝑈𝑌𝑥𝑌) → ((𝑥𝐻𝑈) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥))
3630, 35anbi12d 631 . . . . . . . 8 ((𝑈𝑌𝑥𝑌) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3736adantl 482 . . . . . . 7 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → (((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
3826, 37mpbird 256 . . . . . 6 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ (𝑈𝑌𝑥𝑌)) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
3938anassrs 468 . . . . 5 ((((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) ∧ 𝑥𝑌) → ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4039ralrimiva 3146 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋) ∧ 𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
41403impa 1110 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
42123adant3 1132 . . . . . . . 8 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑌 × 𝑌) ⊆ dom 𝐺)
4342, 13sylib 217 . . . . . . 7 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom (𝐺 ↾ (𝑌 × 𝑌)) = (𝑌 × 𝑌))
442, 43eqtrid 2784 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom 𝐻 = (𝑌 × 𝑌))
4544dmeqd 5903 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = dom (𝑌 × 𝑌))
4645, 17eqtrdi 2788 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → dom dom 𝐻 = 𝑌)
4746raleqdv 3325 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ∀𝑥𝑌 ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
4841, 47mpbird 256 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
4920, 48jca 512 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  cin 3946  wss 3947   × cxp 5673  dom cdm 5675  ran crn 5676  cres 5677  wf 6536  ontowfo 6538  cfv 6540  (class class class)co 7405  GIdcgi 29730   ExId cexid 36700  Magmacmagm 36704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-riota 7361  df-ov 7408  df-gid 29734  df-exid 36701  df-mgmOLD 36705
This theorem is referenced by:  exidres  36734  exidresid  36735
  Copyright terms: Public domain W3C validator