MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfsf Structured version   Visualization version   GIF version

Theorem ovolfsf 24074
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolfs.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfsf (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))

Proof of Theorem ovolfsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 absf 14699 . . . . . 6 abs:ℂ⟶ℝ
2 subf 10890 . . . . . 6 − :(ℂ × ℂ)⟶ℂ
3 fco 6533 . . . . . 6 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
41, 2, 3mp2an 690 . . . . 5 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
5 inss2 4208 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
6 ax-resscn 10596 . . . . . . . 8 ℝ ⊆ ℂ
7 xpss12 5572 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
86, 6, 7mp2an 690 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
95, 8sstri 3978 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)
10 fss 6529 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ))
119, 10mpan2 689 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ))
12 fco 6533 . . . . 5 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
134, 11, 12sylancr 589 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
14 ovolfs.1 . . . . 5 𝐺 = ((abs ∘ − ) ∘ 𝐹)
1514feq1i 6507 . . . 4 (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
1613, 15sylibr 236 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ)
1716ffnd 6517 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ)
1816ffvelrnda 6853 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
19 ovolfcl 24069 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
20 subge0 11155 . . . . . . . 8 (((2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2120ancoms 461 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2221biimp3ar 1466 . . . . . 6 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2319, 22syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2414ovolfsval 24073 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2523, 24breqtrrd 5096 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺𝑥))
26 elrege0 12845 . . . 4 ((𝐺𝑥) ∈ (0[,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ 0 ≤ (𝐺𝑥)))
2718, 25, 26sylanbrc 585 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (0[,)+∞))
2827ralrimiva 3184 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞))
29 ffnfv 6884 . 2 (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞)))
3017, 28, 29sylanbrc 585 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cin 3937  wss 3938   class class class wbr 5068   × cxp 5555  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  cc 10537  cr 10538  0cc0 10539  +∞cpnf 10674  cle 10678  cmin 10872  cn 11640  [,)cico 12743  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  ovolsf  24075  ovollb2lem  24091  ovolunlem1a  24099  ovoliunlem1  24105  ovolshftlem1  24112  ovolicc2lem4  24123  ioombl1lem4  24164  ovolfs2  24174  uniioombllem2  24186  uniioombllem6  24191
  Copyright terms: Public domain W3C validator