![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolfsf | Structured version Visualization version GIF version |
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
Ref | Expression |
---|---|
ovolfsf | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 15372 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
2 | subf 11507 | . . . . . 6 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | fco 6760 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
4 | 1, 2, 3 | mp2an 692 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
5 | inss2 4245 | . . . . . . 7 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
6 | ax-resscn 11209 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
7 | xpss12 5703 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
8 | 6, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
9 | 5, 8 | sstri 4004 | . . . . . 6 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ) |
10 | fss 6752 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ)) | |
11 | 9, 10 | mpan2 691 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ)) |
12 | fco 6760 | . . . . 5 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) | |
13 | 4, 11, 12 | sylancr 587 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
14 | ovolfs.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
15 | 14 | feq1i 6727 | . . . 4 ⊢ (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
16 | 13, 15 | sylibr 234 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ) |
17 | 16 | ffnd 6737 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ) |
18 | 16 | ffvelcdmda 7103 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ ℝ) |
19 | ovolfcl 25514 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
20 | subge0 11773 | . . . . . . . 8 ⊢ (((2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
21 | 20 | ancoms 458 | . . . . . . 7 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) |
22 | 21 | biimp3ar 1469 | . . . . . 6 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥))) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
23 | 19, 22 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
24 | 14 | ovolfsval 25518 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) = ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
25 | 23, 24 | breqtrrd 5175 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺‘𝑥)) |
26 | elrege0 13490 | . . . 4 ⊢ ((𝐺‘𝑥) ∈ (0[,)+∞) ↔ ((𝐺‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑥))) | |
27 | 18, 25, 26 | sylanbrc 583 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ (0[,)+∞)) |
28 | 27 | ralrimiva 3143 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞)) |
29 | ffnfv 7138 | . 2 ⊢ (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞))) | |
30 | 17, 28, 29 | sylanbrc 583 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∩ cin 3961 ⊆ wss 3962 class class class wbr 5147 × cxp 5686 ∘ ccom 5692 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 1st c1st 8010 2nd c2nd 8011 ℂcc 11150 ℝcr 11151 0cc0 11152 +∞cpnf 11289 ≤ cle 11293 − cmin 11489 ℕcn 12263 [,)cico 13385 abscabs 15269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-ico 13389 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 |
This theorem is referenced by: ovolsf 25520 ovollb2lem 25536 ovolunlem1a 25544 ovoliunlem1 25550 ovolshftlem1 25557 ovolicc2lem4 25568 ioombl1lem4 25609 ovolfs2 25619 uniioombllem2 25631 uniioombllem6 25636 |
Copyright terms: Public domain | W3C validator |