![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolfsf | Structured version Visualization version GIF version |
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
Ref | Expression |
---|---|
ovolfsf | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 14488 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
2 | subf 10626 | . . . . . 6 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | fco 6310 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
4 | 1, 2, 3 | mp2an 682 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
5 | inss2 4054 | . . . . . . 7 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
6 | ax-resscn 10331 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
7 | xpss12 5372 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
8 | 6, 6, 7 | mp2an 682 | . . . . . . 7 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
9 | 5, 8 | sstri 3830 | . . . . . 6 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ) |
10 | fss 6306 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ)) | |
11 | 9, 10 | mpan2 681 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ)) |
12 | fco 6310 | . . . . 5 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) | |
13 | 4, 11, 12 | sylancr 581 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
14 | ovolfs.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
15 | 14 | feq1i 6284 | . . . 4 ⊢ (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
16 | 13, 15 | sylibr 226 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ) |
17 | 16 | ffnd 6294 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ) |
18 | 16 | ffvelrnda 6625 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ ℝ) |
19 | ovolfcl 23674 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
20 | subge0 10890 | . . . . . . . 8 ⊢ (((2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
21 | 20 | ancoms 452 | . . . . . . 7 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) |
22 | 21 | biimp3ar 1543 | . . . . . 6 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥))) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
23 | 19, 22 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
24 | 14 | ovolfsval 23678 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) = ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
25 | 23, 24 | breqtrrd 4916 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺‘𝑥)) |
26 | elrege0 12596 | . . . 4 ⊢ ((𝐺‘𝑥) ∈ (0[,)+∞) ↔ ((𝐺‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑥))) | |
27 | 18, 25, 26 | sylanbrc 578 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ (0[,)+∞)) |
28 | 27 | ralrimiva 3148 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞)) |
29 | ffnfv 6654 | . 2 ⊢ (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞))) | |
30 | 17, 28, 29 | sylanbrc 578 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∩ cin 3791 ⊆ wss 3792 class class class wbr 4888 × cxp 5355 ∘ ccom 5361 Fn wfn 6132 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 1st c1st 7445 2nd c2nd 7446 ℂcc 10272 ℝcr 10273 0cc0 10274 +∞cpnf 10410 ≤ cle 10414 − cmin 10608 ℕcn 11378 [,)cico 12493 abscabs 14385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-z 11733 df-uz 11997 df-rp 12142 df-ico 12497 df-seq 13124 df-exp 13183 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 |
This theorem is referenced by: ovolsf 23680 ovollb2lem 23696 ovolunlem1a 23704 ovoliunlem1 23710 ovolshftlem1 23717 ovolicc2lem4 23728 ioombl1lem4 23769 ovolfs2 23779 uniioombllem2 23791 uniioombllem6 23796 |
Copyright terms: Public domain | W3C validator |