MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfsf Structured version   Visualization version   GIF version

Theorem ovolfsf 24071
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolfs.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfsf (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))

Proof of Theorem ovolfsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 absf 14693 . . . . . 6 abs:ℂ⟶ℝ
2 subf 10880 . . . . . 6 − :(ℂ × ℂ)⟶ℂ
3 fco 6519 . . . . . 6 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
41, 2, 3mp2an 691 . . . . 5 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
5 inss2 4190 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
6 ax-resscn 10586 . . . . . . . 8 ℝ ⊆ ℂ
7 xpss12 5557 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
86, 6, 7mp2an 691 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
95, 8sstri 3961 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)
10 fss 6515 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ))
119, 10mpan2 690 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ))
12 fco 6519 . . . . 5 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
134, 11, 12sylancr 590 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
14 ovolfs.1 . . . . 5 𝐺 = ((abs ∘ − ) ∘ 𝐹)
1514feq1i 6493 . . . 4 (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
1613, 15sylibr 237 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ)
1716ffnd 6503 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ)
1816ffvelrnda 6839 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
19 ovolfcl 24066 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
20 subge0 11145 . . . . . . . 8 (((2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2120ancoms 462 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2221biimp3ar 1467 . . . . . 6 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2319, 22syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2414ovolfsval 24070 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2523, 24breqtrrd 5080 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺𝑥))
26 elrege0 12837 . . . 4 ((𝐺𝑥) ∈ (0[,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ 0 ≤ (𝐺𝑥)))
2718, 25, 26sylanbrc 586 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (0[,)+∞))
2827ralrimiva 3177 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞))
29 ffnfv 6870 . 2 (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞)))
3017, 28, 29sylanbrc 586 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  cin 3918  wss 3919   class class class wbr 5052   × cxp 5540  ccom 5546   Fn wfn 6338  wf 6339  cfv 6343  (class class class)co 7145  1st c1st 7677  2nd c2nd 7678  cc 10527  cr 10528  0cc0 10529  +∞cpnf 10664  cle 10668  cmin 10862  cn 11630  [,)cico 12733  abscabs 14589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-sup 8897  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-rp 12383  df-ico 12737  df-seq 13370  df-exp 13431  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591
This theorem is referenced by:  ovolsf  24072  ovollb2lem  24088  ovolunlem1a  24096  ovoliunlem1  24102  ovolshftlem1  24109  ovolicc2lem4  24120  ioombl1lem4  24161  ovolfs2  24171  uniioombllem2  24183  uniioombllem6  24188
  Copyright terms: Public domain W3C validator