| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolfsf | Structured version Visualization version GIF version | ||
| Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
| Ref | Expression |
|---|---|
| ovolfsf | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absf 15280 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
| 2 | subf 11399 | . . . . . 6 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 3 | fco 6694 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
| 5 | inss2 4197 | . . . . . . 7 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
| 6 | ax-resscn 11101 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 7 | xpss12 5646 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
| 8 | 6, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| 9 | 5, 8 | sstri 3953 | . . . . . 6 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ) |
| 10 | fss 6686 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ)) | |
| 11 | 9, 10 | mpan2 691 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ)) |
| 12 | fco 6694 | . . . . 5 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) | |
| 13 | 4, 11, 12 | sylancr 587 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
| 14 | ovolfs.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
| 15 | 14 | feq1i 6661 | . . . 4 ⊢ (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
| 16 | 13, 15 | sylibr 234 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ) |
| 17 | 16 | ffnd 6671 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ) |
| 18 | 16 | ffvelcdmda 7038 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ ℝ) |
| 19 | ovolfcl 25400 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
| 20 | subge0 11667 | . . . . . . . 8 ⊢ (((2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
| 21 | 20 | ancoms 458 | . . . . . . 7 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) |
| 22 | 21 | biimp3ar 1472 | . . . . . 6 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥))) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
| 23 | 19, 22 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
| 24 | 14 | ovolfsval 25404 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) = ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
| 25 | 23, 24 | breqtrrd 5130 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺‘𝑥)) |
| 26 | elrege0 13391 | . . . 4 ⊢ ((𝐺‘𝑥) ∈ (0[,)+∞) ↔ ((𝐺‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑥))) | |
| 27 | 18, 25, 26 | sylanbrc 583 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ (0[,)+∞)) |
| 28 | 27 | ralrimiva 3125 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞)) |
| 29 | ffnfv 7073 | . 2 ⊢ (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞))) | |
| 30 | 17, 28, 29 | sylanbrc 583 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ⊆ wss 3911 class class class wbr 5102 × cxp 5629 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 ℂcc 11042 ℝcr 11043 0cc0 11044 +∞cpnf 11181 ≤ cle 11185 − cmin 11381 ℕcn 12162 [,)cico 13284 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: ovolsf 25406 ovollb2lem 25422 ovolunlem1a 25430 ovoliunlem1 25436 ovolshftlem1 25443 ovolicc2lem4 25454 ioombl1lem4 25495 ovolfs2 25505 uniioombllem2 25517 uniioombllem6 25522 |
| Copyright terms: Public domain | W3C validator |