![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolfsf | Structured version Visualization version GIF version |
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
Ref | Expression |
---|---|
ovolfs.1 | ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) |
Ref | Expression |
---|---|
ovolfsf | ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 15181 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
2 | subf 11361 | . . . . . 6 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | fco 6689 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
4 | 1, 2, 3 | mp2an 690 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
5 | inss2 4187 | . . . . . . 7 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
6 | ax-resscn 11066 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
7 | xpss12 5646 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
8 | 6, 6, 7 | mp2an 690 | . . . . . . 7 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
9 | 5, 8 | sstri 3951 | . . . . . 6 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ) |
10 | fss 6682 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ)) | |
11 | 9, 10 | mpan2 689 | . . . . 5 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ)) |
12 | fco 6689 | . . . . 5 ⊢ (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) | |
13 | 4, 11, 12 | sylancr 587 | . . . 4 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
14 | ovolfs.1 | . . . . 5 ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) | |
15 | 14 | feq1i 6656 | . . . 4 ⊢ (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ) |
16 | 13, 15 | sylibr 233 | . . 3 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ) |
17 | 16 | ffnd 6666 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ) |
18 | 16 | ffvelcdmda 7031 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ ℝ) |
19 | ovolfcl 24781 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
20 | subge0 11626 | . . . . . . . 8 ⊢ (((2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) | |
21 | 20 | ancoms 459 | . . . . . . 7 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥))) ↔ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥)))) |
22 | 21 | biimp3ar 1470 | . . . . . 6 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑥)) ≤ (2nd ‘(𝐹‘𝑥))) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
23 | 19, 22 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
24 | 14 | ovolfsval 24785 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) = ((2nd ‘(𝐹‘𝑥)) − (1st ‘(𝐹‘𝑥)))) |
25 | 23, 24 | breqtrrd 5131 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺‘𝑥)) |
26 | elrege0 13325 | . . . 4 ⊢ ((𝐺‘𝑥) ∈ (0[,)+∞) ↔ ((𝐺‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑥))) | |
27 | 18, 25, 26 | sylanbrc 583 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺‘𝑥) ∈ (0[,)+∞)) |
28 | 27 | ralrimiva 3141 | . 2 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞)) |
29 | ffnfv 7062 | . 2 ⊢ (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺‘𝑥) ∈ (0[,)+∞))) | |
30 | 17, 28, 29 | sylanbrc 583 | 1 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∩ cin 3907 ⊆ wss 3908 class class class wbr 5103 × cxp 5629 ∘ ccom 5635 Fn wfn 6488 ⟶wf 6489 ‘cfv 6493 (class class class)co 7351 1st c1st 7911 2nd c2nd 7912 ℂcc 11007 ℝcr 11008 0cc0 11009 +∞cpnf 11144 ≤ cle 11148 − cmin 11343 ℕcn 12111 [,)cico 13220 abscabs 15078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-sup 9336 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-n0 12372 df-z 12458 df-uz 12722 df-rp 12870 df-ico 13224 df-seq 13861 df-exp 13922 df-cj 14943 df-re 14944 df-im 14945 df-sqrt 15079 df-abs 15080 |
This theorem is referenced by: ovolsf 24787 ovollb2lem 24803 ovolunlem1a 24811 ovoliunlem1 24817 ovolshftlem1 24824 ovolicc2lem4 24835 ioombl1lem4 24876 ovolfs2 24886 uniioombllem2 24898 uniioombllem6 24903 |
Copyright terms: Public domain | W3C validator |