MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfsf Structured version   Visualization version   GIF version

Theorem ovolfsf 25405
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolfs.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfsf (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))

Proof of Theorem ovolfsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 absf 15280 . . . . . 6 abs:ℂ⟶ℝ
2 subf 11399 . . . . . 6 − :(ℂ × ℂ)⟶ℂ
3 fco 6694 . . . . . 6 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
41, 2, 3mp2an 692 . . . . 5 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
5 inss2 4197 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
6 ax-resscn 11101 . . . . . . . 8 ℝ ⊆ ℂ
7 xpss12 5646 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
86, 6, 7mp2an 692 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
95, 8sstri 3953 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)
10 fss 6686 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ))
119, 10mpan2 691 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ))
12 fco 6694 . . . . 5 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
134, 11, 12sylancr 587 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
14 ovolfs.1 . . . . 5 𝐺 = ((abs ∘ − ) ∘ 𝐹)
1514feq1i 6661 . . . 4 (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
1613, 15sylibr 234 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ)
1716ffnd 6671 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ)
1816ffvelcdmda 7038 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
19 ovolfcl 25400 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
20 subge0 11667 . . . . . . . 8 (((2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2120ancoms 458 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2221biimp3ar 1472 . . . . . 6 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2319, 22syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2414ovolfsval 25404 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2523, 24breqtrrd 5130 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺𝑥))
26 elrege0 13391 . . . 4 ((𝐺𝑥) ∈ (0[,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ 0 ≤ (𝐺𝑥)))
2718, 25, 26sylanbrc 583 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (0[,)+∞))
2827ralrimiva 3125 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞))
29 ffnfv 7073 . 2 (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞)))
3017, 28, 29sylanbrc 583 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911   class class class wbr 5102   × cxp 5629  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  cc 11042  cr 11043  0cc0 11044  +∞cpnf 11181  cle 11185  cmin 11381  cn 12162  [,)cico 13284  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  ovolsf  25406  ovollb2lem  25422  ovolunlem1a  25430  ovoliunlem1  25436  ovolshftlem1  25443  ovolicc2lem4  25454  ioombl1lem4  25495  ovolfs2  25505  uniioombllem2  25517  uniioombllem6  25522
  Copyright terms: Public domain W3C validator