MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfsf Structured version   Visualization version   GIF version

Theorem ovolfsf 25519
Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolfs.1 𝐺 = ((abs ∘ − ) ∘ 𝐹)
Assertion
Ref Expression
ovolfsf (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))

Proof of Theorem ovolfsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 absf 15372 . . . . . 6 abs:ℂ⟶ℝ
2 subf 11507 . . . . . 6 − :(ℂ × ℂ)⟶ℂ
3 fco 6760 . . . . . 6 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
41, 2, 3mp2an 692 . . . . 5 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
5 inss2 4245 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
6 ax-resscn 11209 . . . . . . . 8 ℝ ⊆ ℂ
7 xpss12 5703 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
86, 6, 7mp2an 692 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
95, 8sstri 4004 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)
10 fss 6752 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℂ × ℂ)) → 𝐹:ℕ⟶(ℂ × ℂ))
119, 10mpan2 691 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℂ × ℂ))
12 fco 6760 . . . . 5 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝐹:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
134, 11, 12sylancr 587 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
14 ovolfs.1 . . . . 5 𝐺 = ((abs ∘ − ) ∘ 𝐹)
1514feq1i 6727 . . . 4 (𝐺:ℕ⟶ℝ ↔ ((abs ∘ − ) ∘ 𝐹):ℕ⟶ℝ)
1613, 15sylibr 234 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶ℝ)
1716ffnd 6737 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 Fn ℕ)
1816ffvelcdmda 7103 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℝ)
19 ovolfcl 25514 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
20 subge0 11773 . . . . . . . 8 (((2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2120ancoms 458 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ) → (0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ↔ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
2221biimp3ar 1469 . . . . . 6 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2319, 22syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2414ovolfsval 25518 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
2523, 24breqtrrd 5175 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝐺𝑥))
26 elrege0 13490 . . . 4 ((𝐺𝑥) ∈ (0[,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ 0 ≤ (𝐺𝑥)))
2718, 25, 26sylanbrc 583 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐺𝑥) ∈ (0[,)+∞))
2827ralrimiva 3143 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞))
29 ffnfv 7138 . 2 (𝐺:ℕ⟶(0[,)+∞) ↔ (𝐺 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝐺𝑥) ∈ (0[,)+∞)))
3017, 28, 29sylanbrc 583 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  cin 3961  wss 3962   class class class wbr 5147   × cxp 5686  ccom 5692   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  1st c1st 8010  2nd c2nd 8011  cc 11150  cr 11151  0cc0 11152  +∞cpnf 11289  cle 11293  cmin 11489  cn 12263  [,)cico 13385  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  ovolsf  25520  ovollb2lem  25536  ovolunlem1a  25544  ovoliunlem1  25550  ovolshftlem1  25557  ovolicc2lem4  25568  ioombl1lem4  25609  ovolfs2  25619  uniioombllem2  25631  uniioombllem6  25636
  Copyright terms: Public domain W3C validator