Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirc Structured version   Visualization version   GIF version

Theorem areacirc 37427
Description: The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
Assertion
Ref Expression
areacirc ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem areacirc
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . . . 6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
2 opabssxp 5766 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ × ℝ)
31, 2eqsstri 4013 . . . . 5 𝑆 ⊆ (ℝ × ℝ)
43a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ⊆ (ℝ × ℝ))
51areacirclem5 37426 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
6 resqcl 14137 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
763ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
8 resqcl 14137 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
983ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
107, 9resubcld 11683 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
1110adantr 479 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12 absresq 15302 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
13123ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
1413breq1d 5155 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
15 recn 11239 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
1615abscld 15436 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
17163ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
18 simp1 1133 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
1915absge0d 15444 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
20193ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
21 simp2 1134 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2217, 18, 20, 21le2sqd 14269 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
237, 9subge0d 11845 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2414, 22, 233bitr4d 310 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
2524biimpa 475 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
2611, 25resqrtcld 15417 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
2726renegcld 11682 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
28 iccmbl 25583 . . . . . . . . . 10 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
2927, 26, 28syl2anc 582 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
30 mblvol 25547 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3129, 30syl 17 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3211, 25sqrtge0d 15420 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
3326, 26, 32, 32addge0d 11831 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
34 recn 11239 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
3534sqcld 14157 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
36353ad2ant1 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
3715sqcld 14157 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
38373ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
3936, 38subcld 11612 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
4039sqrtcld 15437 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4140adantr 479 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4241, 41subnegd 11619 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
4342breq2d 5157 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
4426, 27subge0d 11845 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4543, 44bitr3d 280 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4633, 45mpbid 231 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
47 ovolicc 25540 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4827, 26, 46, 47syl3anc 1368 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4931, 48eqtrd 2766 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
5026, 27resubcld 11683 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈ ℝ)
5149, 50eqeltrd 2826 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)
52 volf 25546 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
53 ffn 6720 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
54 elpreima 7063 . . . . . . . . . 10 (vol Fn dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)))
5552, 53, 54mp2b 10 . . . . . . . . 9 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ))
5629, 51, 55sylanbrc 581 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ))
57 0mbl 25556 . . . . . . . . . 10 ∅ ∈ dom vol
58 mblvol 25547 . . . . . . . . . . . . 13 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
5957, 58ax-mp 5 . . . . . . . . . . . 12 (vol‘∅) = (vol*‘∅)
60 ovol0 25510 . . . . . . . . . . . 12 (vol*‘∅) = 0
6159, 60eqtri 2754 . . . . . . . . . . 11 (vol‘∅) = 0
62 0re 11257 . . . . . . . . . . 11 0 ∈ ℝ
6361, 62eqeltri 2822 . . . . . . . . . 10 (vol‘∅) ∈ ℝ
64 elpreima 7063 . . . . . . . . . . 11 (vol Fn dom vol → (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ)))
6552, 53, 64mp2b 10 . . . . . . . . . 10 (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ))
6657, 63, 65mpbir2an 709 . . . . . . . . 9 ∅ ∈ (vol “ ℝ)
6766a1i 11 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (vol “ ℝ))
6856, 67ifclda 4558 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈ (vol “ ℝ))
695, 68eqeltrd 2826 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
70693expa 1115 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
7170ralrimiva 3136 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
725fveq2d 6897 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
73723expa 1115 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
7473mpteq2dva 5245 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) = (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))))
75 renegcl 11564 . . . . . . . 8 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
7675adantr 479 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → -𝑅 ∈ ℝ)
77 simpl 481 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℝ)
78 iccssre 13454 . . . . . . 7 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
7976, 77, 78syl2anc 582 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅[,]𝑅) ⊆ ℝ)
80 rembl 25557 . . . . . . 7 ℝ ∈ dom vol
8180a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ℝ ∈ dom vol)
82 fvexd 6908 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈ V)
83 eldif 3956 . . . . . . . . 9 (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)))
84 3anass 1092 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅)))
8584a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
86753ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → -𝑅 ∈ ℝ)
87 elicc2 13437 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
8886, 18, 87syl2anc 582 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
89 simp3 1135 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
9089, 18absled 15430 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
9189biantrurd 531 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9290, 91bitrd 278 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9385, 88, 923bitr4rd 311 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9493biimpd 228 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9594con3d 152 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))
96953expia 1118 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)))
9796impd 409 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9883, 97biimtrid 241 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9998imp 405 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅)
100 iffalse 4532 . . . . . . . . 9 (¬ (abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
101100fveq2d 6897 . . . . . . . 8 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘∅))
102101, 61eqtrdi 2782 . . . . . . 7 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10399, 102syl 17 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10476, 77, 87syl2anc 582 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
10590biimprd 247 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
106105expd 414 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅)))
1071063expia 1118 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅))))
1081073impd 1345 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
109104, 108sylbid 239 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅))
1101093impia 1114 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅)
111 iftrue 4529 . . . . . . . . . . . 12 ((abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
112111fveq2d 6897 . . . . . . . . . . 11 ((abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
113110, 112syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
11463ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
11575, 78mpancom 686 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
116115sselda 3978 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
1171163adant2 1128 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
118117resqcld 14138 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
119114, 118resubcld 11683 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12075, 87mpancom 686 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
121120adantr 479 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
12222, 90, 143bitr3rd 309 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅𝑡𝑡𝑅)))
12323, 122bitrd 278 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
124123biimprd 247 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
125124expd 414 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))
1261253expia 1118 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
1271263impd 1345 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
128121, 127sylbid 239 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
1291283impia 1114 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
130119, 129resqrtcld 15417 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
131130renegcld 11682 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
132131, 130, 28syl2anc 582 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
133132, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
134119recnd 11283 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
135134sqrtcld 15437 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
136135, 135subnegd 11619 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
137119, 129sqrtge0d 15420 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
138130, 130, 137, 137addge0d 11831 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
139136breq2d 5157 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
140130, 131subge0d 11845 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
141139, 140bitr3d 280 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
142138, 141mpbid 231 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
143131, 130, 142, 47syl3anc 1368 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
1441352timesd 12501 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
145136, 143, 1443eqtr4d 2776 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
146113, 133, 1453eqtrd 2770 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
1471463expa 1115 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
148147mpteq2dva 5245 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
149 areacirclem3 37424 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1)
150148, 149eqeltrd 2826 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15179, 81, 82, 103, 150iblss2 25823 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15274, 151eqeltrd 2826 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1)
153 dmarea 26982 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1))
1544, 71, 152, 153syl3anbrc 1340 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ∈ dom area)
155 areaval 26989 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
156154, 155syl 17 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
157 elioore 13402 . . . . . 6 (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ)
15853expa 1115 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
159157, 158sylan2 591 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
160159fveq2d 6897 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
161160itgeq2dv 25799 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
162 ioossre 13433 . . . . 5 (-𝑅(,)𝑅) ⊆ ℝ
163162a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ ℝ)
164 eldif 3956 . . . . . 6 (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)))
16575rexrd 11305 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ*)
166 rexr 11301 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
167 elioo2 13413 . . . . . . . . . . . . . 14 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
168165, 166, 167syl2anc 582 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
1691683ad2ant1 1130 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
17089biantrurd 531 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
17189, 18absltd 15429 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
172 3anass 1092 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅)))
173172a1i 11 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
174170, 171, 1733bitr4rd 311 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅))
175169, 174bitrd 278 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅))
176175notbid 317 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅))
17718, 17lenltd 11401 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅))
178176, 177bitr4d 281 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡)))
1795adantr 479 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
180179fveq2d 6897 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
18117anim1i 613 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅))
182 eqle 11357 . . . . . . . . . . . . . . . 16 (((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅)
183181, 182, 1123syl 18 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
184 oveq1 7423 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑡) = 𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2))
185184adantl 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2))
18613adantr 479 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2))
187185, 186eqtr3d 2768 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2))
188 fvoveq1 7439 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑡↑2) − (𝑡↑2))))
189188negeqd 11495 . . . . . . . . . . . . . . . . . . . 20 ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) = -(√‘((𝑡↑2) − (𝑡↑2))))
190189, 188oveq12d 7434 . . . . . . . . . . . . . . . . . . 19 ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))))
1918recnd 11283 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
192191subidd 11600 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0)
193192fveq2d 6897 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = (√‘0))
194193negeqd 11495 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = -(√‘0))
195 sqrt0 15241 . . . . . . . . . . . . . . . . . . . . . . . 24 (√‘0) = 0
196195negeqi 11494 . . . . . . . . . . . . . . . . . . . . . . 23 -(√‘0) = -0
197 neg0 11547 . . . . . . . . . . . . . . . . . . . . . . 23 -0 = 0
198196, 197eqtri 2754 . . . . . . . . . . . . . . . . . . . . . 22 -(√‘0) = 0
199194, 198eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = 0)
200193, 195eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = 0)
201199, 200oveq12d 7434 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
2022013ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
203190, 202sylan9eqr 2788 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (0[,]0))
204203fveq2d 6897 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol‘(0[,]0)))
205 iccmbl 25583 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom vol)
20662, 62, 205mp2an 690 . . . . . . . . . . . . . . . . . . 19 (0[,]0) ∈ dom vol
207 mblvol 25547 . . . . . . . . . . . . . . . . . . 19 ((0[,]0) ∈ dom vol → (vol‘(0[,]0)) = (vol*‘(0[,]0)))
208206, 207ax-mp 5 . . . . . . . . . . . . . . . . . 18 (vol‘(0[,]0)) = (vol*‘(0[,]0))
209 0xr 11302 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
210 iccid 13417 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℝ* → (0[,]0) = {0})
211210fveq2d 6897 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ* → (vol*‘(0[,]0)) = (vol*‘{0}))
212209, 211ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]0)) = (vol*‘{0})
213 ovolsn 25512 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ → (vol*‘{0}) = 0)
21462, 213ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘{0}) = 0
215212, 214eqtri 2754 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]0)) = 0
216208, 215eqtri 2754 . . . . . . . . . . . . . . . . 17 (vol‘(0[,]0)) = 0
217204, 216eqtrdi 2782 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
218187, 217syldan 589 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
219183, 218eqtrd 2766 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
220219ex 411 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
221220adantr 479 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
22218, 17ltnled 11402 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
223222adantr 479 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
224 simpl1 1188 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ)
22517adantr 479 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ)
226 simpr 483 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡))
227224, 225, 226leltned 11408 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅))
228223, 227bitr3d 280 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅))
229228, 102biimtrrdi 253 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
230221, 229pm2.61dne 3018 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
231180, 230eqtrd 2766 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0)
232231ex 411 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0))
233178, 232sylbid 239 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))
2342333expia 1118 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)))
235234impd 409 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
236164, 235biimtrid 241 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
237236imp 405 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0)
238163, 237itgss 25829 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
239 negeq 11493 . . . . . . . . . 10 (𝑅 = 0 → -𝑅 = -0)
240239, 197eqtrdi 2782 . . . . . . . . 9 (𝑅 = 0 → -𝑅 = 0)
241 id 22 . . . . . . . . 9 (𝑅 = 0 → 𝑅 = 0)
242240, 241oveq12d 7434 . . . . . . . 8 (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0))
243 iooid 13400 . . . . . . . 8 (0(,)0) = ∅
244242, 243eqtrdi 2782 . . . . . . 7 (𝑅 = 0 → (-𝑅(,)𝑅) = ∅)
245244adantl 480 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅)
246 itgeq1 25790 . . . . . 6 ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
247245, 246syl 17 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
248 itg0 25797 . . . . . 6 ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0
249 sq0 14204 . . . . . . . . . 10 (0↑2) = 0
250249oveq2i 7427 . . . . . . . . 9 (π · (0↑2)) = (π · 0)
251 picn 26484 . . . . . . . . . 10 π ∈ ℂ
252251mul01i 11445 . . . . . . . . 9 (π · 0) = 0
253250, 252eqtr2i 2755 . . . . . . . 8 0 = (π · (0↑2))
254 oveq1 7423 . . . . . . . . 9 (𝑅 = 0 → (𝑅↑2) = (0↑2))
255254oveq2d 7432 . . . . . . . 8 (𝑅 = 0 → (π · (𝑅↑2)) = (π · (0↑2)))
256253, 255eqtr4id 2785 . . . . . . 7 (𝑅 = 0 → 0 = (π · (𝑅↑2)))
257256adantl 480 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2)))
258248, 257eqtrid 2778 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
259247, 258eqtrd 2766 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
260 simp1 1133 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ)
261 0red 11258 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ∈ ℝ)
262 simpr 483 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ≤ 𝑅)
263261, 77, 262leltned 11408 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0 < 𝑅𝑅 ≠ 0))
264263biimp3ar 1467 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 0 < 𝑅)
265260, 264elrpd 13061 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
2662653expa 1115 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
267157, 16syl 17 . . . . . . . . . . 11 (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ)
268267adantl 480 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ)
269 rpre 13030 . . . . . . . . . . 11 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
270269adantr 479 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ)
271269renegcld 11682 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
272271rexrd 11305 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ*)
273 rpxr 13031 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
274272, 273, 167syl2anc 582 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
275 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
276269adantr 479 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
277275, 276absltd 15429 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
278277biimprd 247 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
279278exp4b 429 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅))))
2802793impd 1345 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
281274, 280sylbid 239 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅))
282281imp 405 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅)
283268, 270, 282ltled 11403 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅)
284283, 112syl 17 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
285269resqcld 14138 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
286285recnd 11283 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
287286adantr 479 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
288191adantl 480 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
289287, 288subcld 11612 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
290289sqrtcld 15437 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
291290, 290subnegd 11619 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
292157, 291sylan2 591 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
293285adantr 479 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
2948adantl 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
295293, 294resubcld 11683 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
296157, 295sylan2 591 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
297 0red 11258 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ)
29816adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
29919adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
300 rpge0 13035 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
301300adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
302298, 276, 299, 301lt2sqd 14268 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2)))
30312adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
304303breq1d 5155 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2)))
305302, 277, 3043bitr3rd 309 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
306294, 293posdifd 11842 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
307305, 306bitr3d 280 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
308307biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
309308exp4b 429 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2))))))
3103093impd 1345 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
311274, 310sylbid 239 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
312311imp 405 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2)))
313297, 296, 312ltled 11403 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
314296, 313resqrtcld 15417 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
315314renegcld 11682 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
316315, 314, 28syl2anc 582 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
317316, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
318296, 313sqrtge0d 15420 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
319314, 314, 318, 318addge0d 11831 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
320292breq2d 5157 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
321314, 315subge0d 11845 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
322320, 321bitr3d 280 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
323319, 322mpbid 231 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
324315, 314, 323, 47syl3anc 1368 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
325317, 324eqtrd 2766 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
326 ax-resscn 11206 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
327326a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ℝ ⊆ ℂ)
328271, 269, 78syl2anc 582 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
329 rpcn 13032 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
330329sqcld 14157 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
331330adantr 479 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
332328sselda 3978 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ)
333332recnd 11283 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ)
334329adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
335 rpne0 13038 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+𝑅 ≠ 0)
336335adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
337333, 334, 336divcld 12035 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ)
338 asincl 26898 . . . . . . . . . . . . . . . . 17 ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
339337, 338syl 17 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
340 1cnd 11250 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
341337sqcld 14157 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ)
342340, 341subcld 11612 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ)
343342sqrtcld 15437 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ)
344337, 343mulcld 11275 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈ ℂ)
345339, 344addcld 11274 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈ ℂ)
346331, 345mulcld 11275 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈ ℂ)
347 eqid 2726 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
348347tgioo2 24807 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
349 iccntr 24825 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
350271, 269, 349syl2anc 582 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
351327, 328, 346, 348, 347, 350dvmptntr 25991 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))))
352 areacirclem1 37422 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
353351, 352eqtrd 2766 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
354353adantr 479 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
355 oveq1 7423 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2))
356355oveq2d 7432 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2)))
357356fveq2d 6897 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
358357oveq2d 7432 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
359358adantl 480 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
360 simpr 483 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅))
361 ovexd 7451 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈ V)
362354, 359, 360, 361fvmptd 7008 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
363157, 290sylan2 591 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
3643632timesd 12501 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
365362, 364eqtrd 2766 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
366292, 325, 3653eqtr4rd 2777 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
367284, 366eqtr4d 2769 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡))
368367itgeq2dv 25799 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡)
369269, 269, 300, 300addge0d 11831 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅 + 𝑅))
370329, 329subnegd 11619 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑅 − -𝑅) = (𝑅 + 𝑅))
371370breq2d 5157 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ 0 ≤ (𝑅 + 𝑅)))
372269, 271subge0d 11845 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ -𝑅𝑅))
373371, 372bitr3d 280 . . . . . . . 8 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 + 𝑅) ↔ -𝑅𝑅))
374369, 373mpbid 231 . . . . . . 7 (𝑅 ∈ ℝ+ → -𝑅𝑅)
375 2cn 12333 . . . . . . . . . . 11 2 ∈ ℂ
376162, 326sstri 3988 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ ℂ
377 ssid 4001 . . . . . . . . . . 11 ℂ ⊆ ℂ
378375, 376, 3773pm3.2i 1336 . . . . . . . . . 10 (2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ)
379 cncfmptc 24920 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
380378, 379mp1i 13 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
381 ioossicc 13458 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)
382 resmpt 6038 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))))
383381, 382ax-mp 5 . . . . . . . . . 10 ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))
384 areacirclem2 37423 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
385269, 300, 384syl2anc 582 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
386 rescncf 24905 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)))
387381, 385, 386mpsyl 68 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
388383, 387eqeltrrid 2831 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
389380, 388mulcncf 25462 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
390353, 389eqeltrd 2826 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
391381a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅))
392 ioombl 25582 . . . . . . . . . . 11 (-𝑅(,)𝑅) ∈ dom vol
393392a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ∈ dom vol)
394 ovexd 7451 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈ V)
395 areacirclem3 37424 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
396391, 393, 394, 395iblss 25822 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
397269, 300, 396syl2anc 582 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
398353, 397eqeltrd 2826 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ 𝐿1)
399 areacirclem4 37425 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
400271, 269, 374, 390, 398, 399ftc2nc 37416 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)))
401 eqidd 2727 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))
402 fvoveq1 7439 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅)))
403 oveq1 7423 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅))
404403oveq1d 7431 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2))
405404oveq2d 7432 . . . . . . . . . . . . . . 15 (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2)))
406405fveq2d 6897 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((𝑅 / 𝑅)↑2))))
407403, 406oveq12d 7434 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))
408402, 407oveq12d 7434 . . . . . . . . . . . 12 (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))
409408oveq2d 7432 . . . . . . . . . . 11 (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
410409adantl 480 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
411 ubicc2 13490 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → 𝑅 ∈ (-𝑅[,]𝑅))
412272, 273, 374, 411syl3anc 1368 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ (-𝑅[,]𝑅))
413 ovexd 7451 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V)
414401, 410, 412, 413fvmptd 7008 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
415329, 335dividd 12033 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) = 1)
416415fveq2d 6897 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (arcsin‘1))
417 asin1 26919 . . . . . . . . . . . . 13 (arcsin‘1) = (π / 2)
418416, 417eqtrdi 2782 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (π / 2))
419415oveq1d 7431 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = (1↑2))
420 sq1 14207 . . . . . . . . . . . . . . . . . . 19 (1↑2) = 1
421419, 420eqtrdi 2782 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = 1)
422421oveq2d 7432 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = (1 − 1))
423 1cnd 11250 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 1 ∈ ℂ)
424423subidd 11600 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − 1) = 0)
425422, 424eqtrd 2766 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = 0)
426425fveq2d 6897 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = (√‘0))
427426, 195eqtrdi 2782 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0)
428427oveq2d 7432 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0))
429329, 329, 335divcld 12035 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) ∈ ℂ)
430429mul01d 11454 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · 0) = 0)
431428, 430eqtrd 2766 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = 0)
432418, 431oveq12d 7434 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) + 0))
433 2ne0 12362 . . . . . . . . . . . . . 14 2 ≠ 0
434251, 375, 433divcli 12001 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
435434a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (π / 2) ∈ ℂ)
436435addridd 11455 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((π / 2) + 0) = (π / 2))
437432, 436eqtrd 2766 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2))
438437oveq2d 7432 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π / 2)))
439414, 438eqtrd 2766 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π / 2)))
440 fvoveq1 7439 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅)))
441 oveq1 7423 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅))
442441oveq1d 7431 . . . . . . . . . . . . . . . 16 (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2))
443442oveq2d 7432 . . . . . . . . . . . . . . 15 (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2)))
444443fveq2d 6897 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((-𝑅 / 𝑅)↑2))))
445441, 444oveq12d 7434 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))
446440, 445oveq12d 7434 . . . . . . . . . . . 12 (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
447446adantl 480 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
448447oveq2d 7432 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
449 lbicc2 13489 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → -𝑅 ∈ (-𝑅[,]𝑅))
450272, 273, 374, 449syl3anc 1368 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → -𝑅 ∈ (-𝑅[,]𝑅))
451 ovexd 7451 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) ∈ V)
452401, 448, 450, 451fvmptd 7008 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
453329, 329, 335divnegd 12048 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = (-𝑅 / 𝑅))
454415negeqd 11495 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = -1)
455453, 454eqtr3d 2768 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) = -1)
456455fveq2d 6897 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = (arcsin‘-1))
457 ax-1cn 11207 . . . . . . . . . . . . . . 15 1 ∈ ℂ
458 asinneg 26911 . . . . . . . . . . . . . . 15 (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1))
459457, 458ax-mp 5 . . . . . . . . . . . . . 14 (arcsin‘-1) = -(arcsin‘1)
460417negeqi 11494 . . . . . . . . . . . . . 14 -(arcsin‘1) = -(π / 2)
461459, 460eqtri 2754 . . . . . . . . . . . . 13 (arcsin‘-1) = -(π / 2)
462456, 461eqtrdi 2782 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = -(π / 2))
463455oveq1d 7431 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = (-1↑2))
464 neg1sqe1 14208 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
465463, 464eqtrdi 2782 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = 1)
466465oveq2d 7432 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = (1 − 1))
467466, 424eqtrd 2766 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = 0)
468467fveq2d 6897 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = (√‘0))
469468, 195eqtrdi 2782 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0)
470469oveq2d 7432 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0))
471271recnd 11283 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℂ)
472471, 329, 335divcld 12035 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) ∈ ℂ)
473472mul01d 11454 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · 0) = 0)
474470, 473eqtrd 2766 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = 0)
475462, 474oveq12d 7434 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = (-(π / 2) + 0))
476434negcli 11569 . . . . . . . . . . . . 13 -(π / 2) ∈ ℂ
477476a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → -(π / 2) ∈ ℂ)
478477addridd 11455 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (-(π / 2) + 0) = -(π / 2))
479475, 478eqtrd 2766 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = -(π / 2))
480479oveq2d 7432 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π / 2)))
481452, 480eqtrd 2766 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π / 2)))
482439, 481oveq12d 7434 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
483434, 434subnegi 11580 . . . . . . . . . . 11 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
484 pidiv2halves 26492 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
485483, 484eqtri 2754 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = π
486485a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((π / 2) − -(π / 2)) = π)
487486oveq2d 7432 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = ((𝑅↑2) · π))
488330, 435, 477subdid 11711 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
489251a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → π ∈ ℂ)
490330, 489mulcomd 11276 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · π) = (π · (𝑅↑2)))
491487, 488, 4903eqtr3d 2774 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π · (𝑅↑2)))
492482, 491eqtrd 2766 . . . . . 6 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2)))
493368, 400, 4923eqtrd 2770 . . . . 5 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
494266, 493syl 17 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
495259, 494pm2.61dane 3019 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
496161, 238, 4953eqtr3d 2774 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡 = (π · (𝑅↑2)))
497156, 496eqtrd 2766 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  Vcvv 3462  cdif 3943  wss 3946  c0 4322  ifcif 4523  {csn 4623   class class class wbr 5145  {copab 5207  cmpt 5228   × cxp 5672  ccnv 5673  dom cdm 5674  ran crn 5675  cres 5676  cima 5677   Fn wfn 6541  wf 6542  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154  +∞cpnf 11286  *cxr 11288   < clt 11289  cle 11290  cmin 11485  -cneg 11486   / cdiv 11912  2c2 12313  +crp 13022  (,)cioo 13372  [,]cicc 13375  cexp 14075  csqrt 15233  abscabs 15234  πcpi 16063  TopOpenctopn 17431  topGenctg 17447  fldccnfld 21339  intcnt 23009  cnccncf 24884  vol*covol 25479  volcvol 25480  𝐿1cibl 25634  citg 25635   D cdv 25880  arcsincasin 26887  areacarea 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-symdif 4241  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-disj 5111  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-dju 9937  df-card 9975  df-acn 9978  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-ioo 13376  df-ioc 13377  df-ico 13378  df-icc 13379  df-fz 13533  df-fzo 13676  df-fl 13806  df-mod 13884  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-shft 15067  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686  df-ef 16064  df-sin 16066  df-cos 16067  df-tan 16068  df-pi 16069  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-xrs 17512  df-qtop 17517  df-imas 17518  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19058  df-cntz 19307  df-cmn 19776  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-fbas 21336  df-fg 21337  df-cnfld 21340  df-top 22884  df-topon 22901  df-topsp 22923  df-bases 22937  df-cld 23011  df-ntr 23012  df-cls 23013  df-nei 23090  df-lp 23128  df-perf 23129  df-cn 23219  df-cnp 23220  df-haus 23307  df-cmp 23379  df-tx 23554  df-hmeo 23747  df-fil 23838  df-fm 23930  df-flim 23931  df-flf 23932  df-xms 24314  df-ms 24315  df-tms 24316  df-cncf 24886  df-ovol 25481  df-vol 25482  df-mbf 25636  df-itg1 25637  df-itg2 25638  df-ibl 25639  df-itg 25640  df-0p 25687  df-limc 25883  df-dv 25884  df-log 26580  df-cxp 26581  df-asin 26890  df-area 26981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator