Step | Hyp | Ref
| Expression |
1 | | areacirc.1 |
. . . . . 6
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} |
2 | | opabssxp 5680 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ ×
ℝ) |
3 | 1, 2 | eqsstri 3956 |
. . . . 5
⊢ 𝑆 ⊆ (ℝ ×
ℝ) |
4 | 3 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑆 ⊆ (ℝ ×
ℝ)) |
5 | 1 | areacirclem5 35878 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
6 | | resqcl 13853 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) |
7 | 6 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ) |
8 | | resqcl 13853 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℝ) |
9 | 8 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ) |
10 | 7, 9 | resubcld 11412 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
11 | 10 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
12 | | absresq 15023 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ →
((abs‘𝑡)↑2) =
(𝑡↑2)) |
13 | 12 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
14 | 13 | breq1d 5085 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
15 | | recn 10970 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) |
16 | 15 | abscld 15157 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ →
(abs‘𝑡) ∈
ℝ) |
17 | 16 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (abs‘𝑡) ∈
ℝ) |
18 | | simp1 1135 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑅 ∈ ℝ) |
19 | 15 | absge0d 15165 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ → 0 ≤
(abs‘𝑡)) |
20 | 19 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘𝑡)) |
21 | | simp2 1136 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤ 𝑅) |
22 | 17, 18, 20, 21 | le2sqd 13983 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2))) |
23 | 7, 9 | subge0d 11574 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
24 | 14, 22, 23 | 3bitr4d 311 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
25 | 24 | biimpa 477 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
26 | 11, 25 | resqrtcld 15138 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
27 | 26 | renegcld 11411 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
28 | | iccmbl 24739 |
. . . . . . . . . 10
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
29 | 27, 26, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
30 | | mblvol 24703 |
. . . . . . . . . . . 12
⊢
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol
→ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
32 | 11, 25 | sqrtge0d 15141 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
33 | 26, 26, 32, 32 | addge0d 11560 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
34 | | recn 10970 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℂ) |
35 | 34 | sqcld 13871 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℂ) |
36 | 35 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ) |
37 | 15 | sqcld 13871 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℂ) |
38 | 37 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ) |
39 | 36, 38 | subcld 11341 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
40 | 39 | sqrtcld 15158 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) →
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℂ) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
42 | 41, 41 | subnegd 11348 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
43 | 42 | breq2d 5087 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
44 | 26, 27 | subge0d 11574 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
45 | 43, 44 | bitr3d 280 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
46 | 33, 45 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
47 | | ovolicc 24696 |
. . . . . . . . . . . 12
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
48 | 27, 26, 46, 47 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
49 | 31, 48 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
50 | 26, 27 | resubcld 11412 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈
ℝ) |
51 | 49, 50 | eqeltrd 2840 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ) |
52 | | volf 24702 |
. . . . . . . . . 10
⊢ vol:dom
vol⟶(0[,]+∞) |
53 | | ffn 6609 |
. . . . . . . . . 10
⊢ (vol:dom
vol⟶(0[,]+∞) → vol Fn dom vol) |
54 | | elpreima 6944 |
. . . . . . . . . 10
⊢ (vol Fn
dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ) ↔
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ))) |
55 | 52, 53, 54 | mp2b 10 |
. . . . . . . . 9
⊢
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ) ↔
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ)) |
56 | 29, 51, 55 | sylanbrc 583 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ)) |
57 | | 0mbl 24712 |
. . . . . . . . . 10
⊢ ∅
∈ dom vol |
58 | | mblvol 24703 |
. . . . . . . . . . . . 13
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(vol‘∅) = (vol*‘∅) |
60 | | ovol0 24666 |
. . . . . . . . . . . 12
⊢
(vol*‘∅) = 0 |
61 | 59, 60 | eqtri 2767 |
. . . . . . . . . . 11
⊢
(vol‘∅) = 0 |
62 | | 0re 10986 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
63 | 61, 62 | eqeltri 2836 |
. . . . . . . . . 10
⊢
(vol‘∅) ∈ ℝ |
64 | | elpreima 6944 |
. . . . . . . . . . 11
⊢ (vol Fn
dom vol → (∅ ∈ (◡vol
“ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅)
∈ ℝ))) |
65 | 52, 53, 64 | mp2b 10 |
. . . . . . . . . 10
⊢ (∅
∈ (◡vol “ ℝ) ↔
(∅ ∈ dom vol ∧ (vol‘∅) ∈
ℝ)) |
66 | 57, 63, 65 | mpbir2an 708 |
. . . . . . . . 9
⊢ ∅
∈ (◡vol “
ℝ) |
67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (◡vol “ ℝ)) |
68 | 56, 67 | ifclda 4495 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈
(◡vol “
ℝ)) |
69 | 5, 68 | eqeltrd 2840 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
70 | 69 | 3expa 1117 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
71 | 70 | ralrimiva 3104 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
72 | 5 | fveq2d 6787 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
73 | 72 | 3expa 1117 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
74 | 73 | mpteq2dva 5175 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) = (𝑡 ∈ ℝ ↦
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)))) |
75 | | renegcl 11293 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ → -𝑅 ∈
ℝ) |
76 | 75 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → -𝑅 ∈
ℝ) |
77 | | simpl 483 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑅 ∈ ℝ) |
78 | | iccssre 13170 |
. . . . . . 7
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ) |
79 | 76, 77, 78 | syl2anc 584 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅[,]𝑅) ⊆ ℝ) |
80 | | rembl 24713 |
. . . . . . 7
⊢ ℝ
∈ dom vol |
81 | 80 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ℝ ∈
dom vol) |
82 | | fvexd 6798 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈
V) |
83 | | eldif 3898 |
. . . . . . . . 9
⊢ (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅))) |
84 | | 3anass 1094 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
86 | 75 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → -𝑅 ∈ ℝ) |
87 | | elicc2 13153 |
. . . . . . . . . . . . . . 15
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
88 | 86, 18, 87 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
89 | | simp3 1137 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
90 | 89, 18 | absled 15151 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
91 | 89 | biantrurd 533 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
92 | 90, 91 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
93 | 85, 88, 92 | 3bitr4rd 312 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 𝑡 ∈ (-𝑅[,]𝑅))) |
94 | 93 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 → 𝑡 ∈ (-𝑅[,]𝑅))) |
95 | 94 | con3d 152 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)) |
96 | 95 | 3expia 1120 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (¬
𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))) |
97 | 96 | impd 411 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ ¬
𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅)) |
98 | 83, 97 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅)) |
99 | 98 | imp 407 |
. . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅) |
100 | | iffalse 4469 |
. . . . . . . . 9
⊢ (¬
(abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
∅) |
101 | 100 | fveq2d 6787 |
. . . . . . . 8
⊢ (¬
(abs‘𝑡) ≤ 𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘∅)) |
102 | 101, 61 | eqtrdi 2795 |
. . . . . . 7
⊢ (¬
(abs‘𝑡) ≤ 𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
103 | 99, 102 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
104 | 76, 77, 87 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
105 | 90 | biimprd 247 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → (abs‘𝑡) ≤ 𝑅)) |
106 | 105 | expd 416 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → (abs‘𝑡) ≤ 𝑅))) |
107 | 106 | 3expia 1120 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → (abs‘𝑡) ≤ 𝑅)))) |
108 | 107 | 3impd 1347 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → (abs‘𝑡) ≤ 𝑅)) |
109 | 104, 108 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅)) |
110 | 109 | 3impia 1116 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅) |
111 | | iftrue 4466 |
. . . . . . . . . . . 12
⊢
((abs‘𝑡) ≤
𝑅 →
if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) |
112 | 111 | fveq2d 6787 |
. . . . . . . . . . 11
⊢
((abs‘𝑡) ≤
𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
113 | 110, 112 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
114 | 6 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ) |
115 | 75, 78 | mpancom 685 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ) |
116 | 115 | sselda 3922 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ) |
117 | 116 | 3adant2 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ) |
118 | 117 | resqcld 13974 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ) |
119 | 114, 118 | resubcld 11412 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
120 | 75, 87 | mpancom 685 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
121 | 120 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
122 | 22, 90, 14 | 3bitr3rd 310 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
123 | 23, 122 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
124 | 123 | biimprd 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
125 | 124 | expd 416 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))) |
126 | 125 | 3expia 1120 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))) |
127 | 126 | 3impd 1347 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
128 | 121, 127 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
129 | 128 | 3impia 1116 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
130 | 119, 129 | resqrtcld 15138 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
131 | 130 | renegcld 11411 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
132 | 131, 130,
28 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
133 | 132, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
134 | 119 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
135 | 134 | sqrtcld 15158 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
136 | 135, 135 | subnegd 11348 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
137 | 119, 129 | sqrtge0d 15141 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
138 | 130, 130,
137, 137 | addge0d 11560 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
139 | 136 | breq2d 5087 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
140 | 130, 131 | subge0d 11574 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
141 | 139, 140 | bitr3d 280 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
142 | 138, 141 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) |
143 | 131, 130,
142, 47 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
144 | 135 | 2timesd 12225 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
145 | 136, 143,
144 | 3eqtr4d 2789 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
146 | 113, 133,
145 | 3eqtrd 2783 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2
· (√‘((𝑅↑2) − (𝑡↑2))))) |
147 | 146 | 3expa 1117 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2
· (√‘((𝑅↑2) − (𝑡↑2))))) |
148 | 147 | mpteq2dva 5175 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2)))))) |
149 | | areacirclem3 35876 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈
𝐿1) |
150 | 148, 149 | eqeltrd 2840 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈
𝐿1) |
151 | 79, 81, 82, 103, 150 | iblss2 24979 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈
𝐿1) |
152 | 74, 151 | eqeltrd 2840 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) ∈
𝐿1) |
153 | | dmarea 26116 |
. . . 4
⊢ (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ ×
ℝ) ∧ ∀𝑡
∈ ℝ (𝑆 “
{𝑡}) ∈ (◡vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) ∈
𝐿1)) |
154 | 4, 71, 152, 153 | syl3anbrc 1342 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑆 ∈ dom area) |
155 | | areaval 26123 |
. . 3
⊢ (𝑆 ∈ dom area →
(area‘𝑆) =
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡) |
156 | 154, 155 | syl 17 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (area‘𝑆) =
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡) |
157 | | elioore 13118 |
. . . . . 6
⊢ (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ) |
158 | 5 | 3expa 1117 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
159 | 157, 158 | sylan2 593 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
160 | 159 | fveq2d 6787 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
161 | 160 | itgeq2dv 24955 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
162 | | ioossre 13149 |
. . . . 5
⊢ (-𝑅(,)𝑅) ⊆ ℝ |
163 | 162 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ⊆ ℝ) |
164 | | eldif 3898 |
. . . . . 6
⊢ (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅))) |
165 | 75 | rexrd 11034 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ → -𝑅 ∈
ℝ*) |
166 | | rexr 11030 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℝ*) |
167 | | elioo2 13129 |
. . . . . . . . . . . . . 14
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
168 | 165, 166,
167 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
169 | 168 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
170 | 89 | biantrurd 533 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅)))) |
171 | 89, 18 | absltd 15150 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
172 | | 3anass 1094 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
173 | 172 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅)))) |
174 | 170, 171,
173 | 3bitr4rd 312 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅)) |
175 | 169, 174 | bitrd 278 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅)) |
176 | 175 | notbid 318 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅)) |
177 | 18, 17 | lenltd 11130 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅)) |
178 | 176, 177 | bitr4d 281 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡))) |
179 | 5 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
180 | 179 | fveq2d 6787 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
181 | 17 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅)) |
182 | | eqle 11086 |
. . . . . . . . . . . . . . . 16
⊢
(((abs‘𝑡)
∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅) |
183 | 181, 182,
112 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
184 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘𝑡) =
𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2)) |
185 | 184 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2)) |
186 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
187 | 185, 186 | eqtr3d 2781 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2)) |
188 | | fvoveq1 7307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) =
(√‘((𝑡↑2)
− (𝑡↑2)))) |
189 | 188 | negeqd 11224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) =
-(√‘((𝑡↑2)
− (𝑡↑2)))) |
190 | 189, 188 | oveq12d 7302 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) =
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2))))) |
191 | 8 | recnd 11012 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℂ) |
192 | 191 | subidd 11329 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0) |
193 | 192 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℝ →
(√‘((𝑡↑2)
− (𝑡↑2))) =
(√‘0)) |
194 | 193 | negeqd 11224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℝ →
-(√‘((𝑡↑2)
− (𝑡↑2))) =
-(√‘0)) |
195 | | sqrt0 14962 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(√‘0) = 0 |
196 | 195 | negeqi 11223 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
-(√‘0) = -0 |
197 | | neg0 11276 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -0 =
0 |
198 | 196, 197 | eqtri 2767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
-(√‘0) = 0 |
199 | 194, 198 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ →
-(√‘((𝑡↑2)
− (𝑡↑2))) =
0) |
200 | 193, 195 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ →
(√‘((𝑡↑2)
− (𝑡↑2))) =
0) |
201 | 199, 200 | oveq12d 7302 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ℝ →
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) =
(0[,]0)) |
202 | 201 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) →
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) =
(0[,]0)) |
203 | 190, 202 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) =
(0[,]0)) |
204 | 203 | fveq2d 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol‘(0[,]0))) |
205 | | iccmbl 24739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom
vol) |
206 | 62, 62, 205 | mp2an 689 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0[,]0)
∈ dom vol |
207 | | mblvol 24703 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0[,]0)
∈ dom vol → (vol‘(0[,]0)) =
(vol*‘(0[,]0))) |
208 | 206, 207 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(vol‘(0[,]0)) = (vol*‘(0[,]0)) |
209 | | 0xr 11031 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ* |
210 | | iccid 13133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
ℝ* → (0[,]0) = {0}) |
211 | 210 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ* → (vol*‘(0[,]0)) =
(vol*‘{0})) |
212 | 209, 211 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(vol*‘(0[,]0)) = (vol*‘{0}) |
213 | | ovolsn 24668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ → (vol*‘{0}) = 0) |
214 | 62, 213 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(vol*‘{0}) = 0 |
215 | 212, 214 | eqtri 2767 |
. . . . . . . . . . . . . . . . . 18
⊢
(vol*‘(0[,]0)) = 0 |
216 | 208, 215 | eqtri 2767 |
. . . . . . . . . . . . . . . . 17
⊢
(vol‘(0[,]0)) = 0 |
217 | 204, 216 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
0) |
218 | 187, 217 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
0) |
219 | 183, 218 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
220 | 219 | ex 413 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
221 | 220 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
222 | 18, 17 | ltnled 11131 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) |
223 | 222 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) |
224 | | simpl1 1190 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ) |
225 | 17 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ) |
226 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡)) |
227 | 224, 225,
226 | leltned 11137 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅)) |
228 | 223, 227 | bitr3d 280 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅)) |
229 | 228, 102 | syl6bir 253 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
230 | 221, 229 | pm2.61dne 3032 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
231 | 180, 230 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0) |
232 | 231 | ex 413 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0)) |
233 | 178, 232 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)) |
234 | 233 | 3expia 1120 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (¬
𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))) |
235 | 234 | impd 411 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ ¬
𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0)) |
236 | 164, 235 | syl5bi 241 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0)) |
237 | 236 | imp 407 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0) |
238 | 163, 237 | itgss 24985 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡) |
239 | | negeq 11222 |
. . . . . . . . . 10
⊢ (𝑅 = 0 → -𝑅 = -0) |
240 | 239, 197 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑅 = 0 → -𝑅 = 0) |
241 | | id 22 |
. . . . . . . . 9
⊢ (𝑅 = 0 → 𝑅 = 0) |
242 | 240, 241 | oveq12d 7302 |
. . . . . . . 8
⊢ (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0)) |
243 | | iooid 13116 |
. . . . . . . 8
⊢ (0(,)0) =
∅ |
244 | 242, 243 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑅 = 0 → (-𝑅(,)𝑅) = ∅) |
245 | 244 | adantl 482 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅) |
246 | | itgeq1 24946 |
. . . . . 6
⊢ ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 =
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
247 | 245, 246 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 =
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
248 | | itg0 24953 |
. . . . . 6
⊢
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0 |
249 | | sq0 13918 |
. . . . . . . . . 10
⊢
(0↑2) = 0 |
250 | 249 | oveq2i 7295 |
. . . . . . . . 9
⊢ (π
· (0↑2)) = (π · 0) |
251 | | picn 25625 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
252 | 251 | mul01i 11174 |
. . . . . . . . 9
⊢ (π
· 0) = 0 |
253 | 250, 252 | eqtr2i 2768 |
. . . . . . . 8
⊢ 0 = (π
· (0↑2)) |
254 | | oveq1 7291 |
. . . . . . . . 9
⊢ (𝑅 = 0 → (𝑅↑2) = (0↑2)) |
255 | 254 | oveq2d 7300 |
. . . . . . . 8
⊢ (𝑅 = 0 → (π ·
(𝑅↑2)) = (π
· (0↑2))) |
256 | 253, 255 | eqtr4id 2798 |
. . . . . . 7
⊢ (𝑅 = 0 → 0 = (π ·
(𝑅↑2))) |
257 | 256 | adantl 482 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2))) |
258 | 248, 257 | eqtrid 2791 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) →
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
259 | 247, 258 | eqtrd 2779 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
260 | | simp1 1135 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ) |
261 | | 0red 10987 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 0 ∈
ℝ) |
262 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 0 ≤ 𝑅) |
263 | 261, 77, 262 | leltned 11137 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (0 < 𝑅 ↔ 𝑅 ≠ 0)) |
264 | 263 | biimp3ar 1469 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 0 < 𝑅) |
265 | 260, 264 | elrpd 12778 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 𝑅 ∈
ℝ+) |
266 | 265 | 3expa 1117 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈
ℝ+) |
267 | 157, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ) |
268 | 267 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ) |
269 | | rpre 12747 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) |
270 | 269 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ) |
271 | 269 | renegcld 11411 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℝ) |
272 | 271 | rexrd 11034 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℝ*) |
273 | | rpxr 12748 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ*) |
274 | 272, 273,
167 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
275 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 𝑡 ∈
ℝ) |
276 | 269 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 𝑅 ∈
ℝ) |
277 | 275, 276 | absltd 15150 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡) <
𝑅 ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
278 | 277 | biimprd 247 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → (abs‘𝑡) < 𝑅)) |
279 | 278 | exp4b 431 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ ℝ
→ (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅)))) |
280 | 279 | 3impd 1347 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((𝑡 ∈ ℝ
∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → (abs‘𝑡) < 𝑅)) |
281 | 274, 280 | sylbid 239 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅)) |
282 | 281 | imp 407 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅) |
283 | 268, 270,
282 | ltled 11132 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅) |
284 | 283, 112 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
285 | 269 | resqcld 13974 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℝ) |
286 | 285 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℂ) |
287 | 286 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑅↑2) ∈
ℂ) |
288 | 191 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑡↑2) ∈
ℂ) |
289 | 287, 288 | subcld 11341 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑅↑2) −
(𝑡↑2)) ∈
ℂ) |
290 | 289 | sqrtcld 15158 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
291 | 290, 290 | subnegd 11348 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
292 | 157, 291 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
293 | 285 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑅↑2) ∈
ℝ) |
294 | 8 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑡↑2) ∈
ℝ) |
295 | 293, 294 | resubcld 11412 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑅↑2) −
(𝑡↑2)) ∈
ℝ) |
296 | 157, 295 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
297 | | 0red 10987 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ) |
298 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (abs‘𝑡) ∈
ℝ) |
299 | 19 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘𝑡)) |
300 | | rpge0 12752 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑅 ∈ ℝ+
→ 0 ≤ 𝑅) |
301 | 300 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 0 ≤ 𝑅) |
302 | 298, 276,
299, 301 | lt2sqd 13982 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡) <
𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2))) |
303 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡)↑2) = (𝑡↑2)) |
304 | 303 | breq1d 5085 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2))) |
305 | 302, 277,
304 | 3bitr3rd 310 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑡↑2) <
(𝑅↑2) ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
306 | 294, 293 | posdifd 11571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑡↑2) <
(𝑅↑2) ↔ 0 <
((𝑅↑2) − (𝑡↑2)))) |
307 | 305, 306 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2)))) |
308 | 307 | biimpd 228 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
309 | 308 | exp4b 431 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ ℝ
→ (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2)))))) |
310 | 309 | 3impd 1347 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ ((𝑡 ∈ ℝ
∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
311 | 274, 310 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
312 | 311 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2))) |
313 | 297, 296,
312 | ltled 11132 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
314 | 296, 313 | resqrtcld 15138 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
315 | 314 | renegcld 11411 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
316 | 315, 314,
28 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
317 | 316, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
318 | 296, 313 | sqrtge0d 15141 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
319 | 314, 314,
318, 318 | addge0d 11560 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
320 | 292 | breq2d 5087 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
321 | 314, 315 | subge0d 11574 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
322 | 320, 321 | bitr3d 280 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
323 | 319, 322 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) |
324 | 315, 314,
323, 47 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
325 | 317, 324 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
326 | | ax-resscn 10937 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
327 | 326 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ ℝ ⊆ ℂ) |
328 | 271, 269,
78 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅[,]𝑅) ⊆
ℝ) |
329 | | rpcn 12749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℂ) |
330 | 329 | sqcld 13871 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℂ) |
331 | 330 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ) |
332 | 328 | sselda 3922 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ) |
333 | 332 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ) |
334 | 329 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ) |
335 | | rpne0 12755 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ≠
0) |
336 | 335 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0) |
337 | 333, 334,
336 | divcld 11760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ) |
338 | | asincl 26032 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ) |
339 | 337, 338 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ) |
340 | | 1cnd 10979 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ) |
341 | 337 | sqcld 13871 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ) |
342 | 340, 341 | subcld 11341 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ) |
343 | 342 | sqrtcld 15158 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ) |
344 | 337, 343 | mulcld 11004 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈
ℂ) |
345 | 339, 344 | addcld 11003 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈
ℂ) |
346 | 331, 345 | mulcld 11004 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈
ℂ) |
347 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
348 | 347 | tgioo2 23975 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
349 | | iccntr 23993 |
. . . . . . . . . . . . . . 15
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅)) |
350 | 271, 269,
349 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅)) |
351 | 327, 328,
346, 348, 347, 350 | dvmptntr 25144 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))) |
352 | | areacirclem1 35874 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
353 | 351, 352 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
354 | 353 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
355 | | oveq1 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2)) |
356 | 355 | oveq2d 7300 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2))) |
357 | 356 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2)))) |
358 | 357 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
359 | 358 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
360 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅)) |
361 | | ovexd 7319 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈
V) |
362 | 354, 359,
360, 361 | fvmptd 6891 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2))))) |
363 | 157, 290 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
364 | 363 | 2timesd 12225 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
365 | 362, 364 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))) |
366 | 292, 325,
365 | 3eqtr4rd 2790 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
367 | 284, 366 | eqtr4d 2782 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
((ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡)) |
368 | 367 | itgeq2dv 24955 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡) |
369 | 269, 269,
300, 300 | addge0d 11560 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ 0 ≤ (𝑅 + 𝑅)) |
370 | 329, 329 | subnegd 11348 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ (𝑅 − -𝑅) = (𝑅 + 𝑅)) |
371 | 370 | breq2d 5087 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 −
-𝑅) ↔ 0 ≤ (𝑅 + 𝑅))) |
372 | 269, 271 | subge0d 11574 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 −
-𝑅) ↔ -𝑅 ≤ 𝑅)) |
373 | 371, 372 | bitr3d 280 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 + 𝑅) ↔ -𝑅 ≤ 𝑅)) |
374 | 369, 373 | mpbid 231 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ≤ 𝑅) |
375 | | 2cn 12057 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
376 | 162, 326 | sstri 3931 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ⊆ ℂ |
377 | | ssid 3944 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
378 | 375, 376,
377 | 3pm3.2i 1338 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ
⊆ ℂ) |
379 | | cncfmptc 24084 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑢 ∈
(-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
380 | 378, 379 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
381 | | ioossicc 13174 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) |
382 | | resmpt 5948 |
. . . . . . . . . . 11
⊢ ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))) |
383 | 381, 382 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) |
384 | | areacirclem2 35875 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
385 | 269, 300,
384 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
386 | | rescncf 24069 |
. . . . . . . . . . 11
⊢ ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))) |
387 | 381, 385,
386 | mpsyl 68 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
388 | 383, 387 | eqeltrrid 2845 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
389 | 380, 388 | mulcncf 24619 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
390 | 353, 389 | eqeltrd 2840 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
391 | 381 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)) |
392 | | ioombl 24738 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ∈ dom vol |
393 | 392 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ∈ dom vol) |
394 | | ovexd 7319 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈
V) |
395 | | areacirclem3 35876 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
396 | 391, 393,
394, 395 | iblss 24978 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
397 | 269, 300,
396 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
398 | 353, 397 | eqeltrd 2840 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈
𝐿1) |
399 | | areacirclem4 35877 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
400 | 271, 269,
374, 390, 398, 399 | ftc2nc 35868 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅))) |
401 | | eqidd 2740 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) |
402 | | fvoveq1 7307 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅))) |
403 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅)) |
404 | 403 | oveq1d 7299 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2)) |
405 | 404 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2))) |
406 | 405 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 −
((𝑅 / 𝑅)↑2)))) |
407 | 403, 406 | oveq12d 7302 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) |
408 | 402, 407 | oveq12d 7302 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) |
409 | 408 | oveq2d 7300 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
410 | 409 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
411 | | ubicc2 13206 |
. . . . . . . . . . 11
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ* ∧ -𝑅 ≤ 𝑅) → 𝑅 ∈ (-𝑅[,]𝑅)) |
412 | 272, 273,
374, 411 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈ (-𝑅[,]𝑅)) |
413 | | ovexd 7319 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V) |
414 | 401, 410,
412, 413 | fvmptd 6891 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
415 | 329, 335 | dividd 11758 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅 / 𝑅) = 1) |
416 | 415 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(𝑅 /
𝑅)) =
(arcsin‘1)) |
417 | | asin1 26053 |
. . . . . . . . . . . . 13
⊢
(arcsin‘1) = (π / 2) |
418 | 416, 417 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(𝑅 /
𝑅)) = (π /
2)) |
419 | 415 | oveq1d 7299 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅)↑2) =
(1↑2)) |
420 | | sq1 13921 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1↑2) = 1 |
421 | 419, 420 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅)↑2) = 1) |
422 | 421 | oveq2d 7300 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − ((𝑅 /
𝑅)↑2)) = (1 −
1)) |
423 | | 1cnd 10979 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ 1 ∈ ℂ) |
424 | 423 | subidd 11329 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − 1) = 0) |
425 | 422, 424 | eqtrd 2779 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (1 − ((𝑅 /
𝑅)↑2)) =
0) |
426 | 425 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((𝑅 / 𝑅)↑2))) =
(√‘0)) |
427 | 426, 195 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0) |
428 | 427 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · (√‘(1
− ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0)) |
429 | 329, 329,
335 | divcld 11760 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅 / 𝑅) ∈
ℂ) |
430 | 429 | mul01d 11183 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · 0) =
0) |
431 | 428, 430 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · (√‘(1
− ((𝑅 / 𝑅)↑2)))) =
0) |
432 | 418, 431 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(𝑅 /
𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) +
0)) |
433 | | 2ne0 12086 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
434 | 251, 375,
433 | divcli 11726 |
. . . . . . . . . . . . 13
⊢ (π /
2) ∈ ℂ |
435 | 434 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (π / 2) ∈ ℂ) |
436 | 435 | addid1d 11184 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((π / 2) + 0) = (π / 2)) |
437 | 432, 436 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(𝑅 /
𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2)) |
438 | 437 | oveq2d 7300 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π /
2))) |
439 | 414, 438 | eqtrd 2779 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π /
2))) |
440 | | fvoveq1 7307 |
. . . . . . . . . . . . 13
⊢ (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅))) |
441 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅)) |
442 | 441 | oveq1d 7299 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2)) |
443 | 442 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2))) |
444 | 443 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 −
((-𝑅 / 𝑅)↑2)))) |
445 | 441, 444 | oveq12d 7302 |
. . . . . . . . . . . . 13
⊢ (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) |
446 | 440, 445 | oveq12d 7302 |
. . . . . . . . . . . 12
⊢ (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) |
447 | 446 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) |
448 | 447 | oveq2d 7300 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))))) |
449 | | lbicc2 13205 |
. . . . . . . . . . 11
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ* ∧ -𝑅 ≤ 𝑅) → -𝑅 ∈ (-𝑅[,]𝑅)) |
450 | 272, 273,
374, 449 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈ (-𝑅[,]𝑅)) |
451 | | ovexd 7319 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) ∈ V) |
452 | 401, 448,
450, 451 | fvmptd 6891 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))))) |
453 | 329, 329,
335 | divnegd 11773 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -(𝑅 / 𝑅) = (-𝑅 / 𝑅)) |
454 | 415 | negeqd 11224 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -(𝑅 / 𝑅) = -1) |
455 | 453, 454 | eqtr3d 2781 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅 / 𝑅) = -1) |
456 | 455 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(-𝑅 /
𝑅)) =
(arcsin‘-1)) |
457 | | ax-1cn 10938 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
458 | | asinneg 26045 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℂ → (arcsin‘-1) = -(arcsin‘1)) |
459 | 457, 458 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(arcsin‘-1) = -(arcsin‘1) |
460 | 417 | negeqi 11223 |
. . . . . . . . . . . . . 14
⊢
-(arcsin‘1) = -(π / 2) |
461 | 459, 460 | eqtri 2767 |
. . . . . . . . . . . . 13
⊢
(arcsin‘-1) = -(π / 2) |
462 | 456, 461 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(-𝑅 /
𝑅)) = -(π /
2)) |
463 | 455 | oveq1d 7299 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅)↑2) =
(-1↑2)) |
464 | | neg1sqe1 13922 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-1↑2) = 1 |
465 | 463, 464 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅)↑2) = 1) |
466 | 465 | oveq2d 7300 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − ((-𝑅 /
𝑅)↑2)) = (1 −
1)) |
467 | 466, 424 | eqtrd 2779 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (1 − ((-𝑅 /
𝑅)↑2)) =
0) |
468 | 467 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((-𝑅 / 𝑅)↑2))) =
(√‘0)) |
469 | 468, 195 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0) |
470 | 469 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · (√‘(1
− ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0)) |
471 | 271 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℂ) |
472 | 471, 329,
335 | divcld 11760 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅 / 𝑅) ∈
ℂ) |
473 | 472 | mul01d 11183 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · 0) =
0) |
474 | 470, 473 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · (√‘(1
− ((-𝑅 / 𝑅)↑2)))) =
0) |
475 | 462, 474 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(-𝑅 /
𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) = (-(π / 2) +
0)) |
476 | 434 | negcli 11298 |
. . . . . . . . . . . . 13
⊢ -(π /
2) ∈ ℂ |
477 | 476 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ -(π / 2) ∈ ℂ) |
478 | 477 | addid1d 11184 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (-(π / 2) + 0) = -(π / 2)) |
479 | 475, 478 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(-𝑅 /
𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) = -(π /
2)) |
480 | 479 | oveq2d 7300 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π /
2))) |
481 | 452, 480 | eqtrd 2779 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π /
2))) |
482 | 439, 481 | oveq12d 7302 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) −
((𝑅↑2) · -(π
/ 2)))) |
483 | 434, 434 | subnegi 11309 |
. . . . . . . . . . 11
⊢ ((π /
2) − -(π / 2)) = ((π / 2) + (π / 2)) |
484 | | pidiv2halves 25633 |
. . . . . . . . . . 11
⊢ ((π /
2) + (π / 2)) = π |
485 | 483, 484 | eqtri 2767 |
. . . . . . . . . 10
⊢ ((π /
2) − -(π / 2)) = π |
486 | 485 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((π / 2) − -(π / 2)) = π) |
487 | 486 | oveq2d 7300 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((π / 2) − -(π / 2))) = ((𝑅↑2) · π)) |
488 | 330, 435,
477 | subdid 11440 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) −
((𝑅↑2) · -(π
/ 2)))) |
489 | 251 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ π ∈ ℂ) |
490 | 330, 489 | mulcomd 11005 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
π) = (π · (𝑅↑2))) |
491 | 487, 488,
490 | 3eqtr3d 2787 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (((𝑅↑2)
· (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π
· (𝑅↑2))) |
492 | 482, 491 | eqtrd 2779 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2))) |
493 | 368, 400,
492 | 3eqtrd 2783 |
. . . . 5
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
494 | 266, 493 | syl 17 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
495 | 259, 494 | pm2.61dane 3033 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
496 | 161, 238,
495 | 3eqtr3d 2787 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) →
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡 = (π · (𝑅↑2))) |
497 | 156, 496 | eqtrd 2779 |
1
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (area‘𝑆) = (π · (𝑅↑2))) |