Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirc Structured version   Visualization version   GIF version

Theorem areacirc 37826
Description: The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
Assertion
Ref Expression
areacirc ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem areacirc
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . . . 6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
2 opabssxp 5713 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ × ℝ)
31, 2eqsstri 3977 . . . . 5 𝑆 ⊆ (ℝ × ℝ)
43a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ⊆ (ℝ × ℝ))
51areacirclem5 37825 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
6 resqcl 14038 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
763ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
8 resqcl 14038 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
983ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
107, 9resubcld 11556 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
1110adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12 absresq 15216 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
13123ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
1413breq1d 5105 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
15 recn 11107 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
1615abscld 15353 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
17163ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
18 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
1915absge0d 15361 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
20193ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
21 simp2 1137 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2217, 18, 20, 21le2sqd 14171 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
237, 9subge0d 11718 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2414, 22, 233bitr4d 311 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
2524biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
2611, 25resqrtcld 15332 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
2726renegcld 11555 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
28 iccmbl 25514 . . . . . . . . . 10 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
2927, 26, 28syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
30 mblvol 25478 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3129, 30syl 17 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3211, 25sqrtge0d 15335 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
3326, 26, 32, 32addge0d 11704 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
34 recn 11107 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
3534sqcld 14058 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
36353ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
3715sqcld 14058 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
38373ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
3936, 38subcld 11483 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
4039sqrtcld 15354 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4140adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4241, 41subnegd 11490 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
4342breq2d 5107 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
4426, 27subge0d 11718 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4543, 44bitr3d 281 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4633, 45mpbid 232 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
47 ovolicc 25471 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4827, 26, 46, 47syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4931, 48eqtrd 2768 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
5026, 27resubcld 11556 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈ ℝ)
5149, 50eqeltrd 2833 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)
52 volf 25477 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
53 ffn 6659 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
54 elpreima 7000 . . . . . . . . . 10 (vol Fn dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)))
5552, 53, 54mp2b 10 . . . . . . . . 9 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ))
5629, 51, 55sylanbrc 583 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ))
57 0mbl 25487 . . . . . . . . . 10 ∅ ∈ dom vol
58 mblvol 25478 . . . . . . . . . . . . 13 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
5957, 58ax-mp 5 . . . . . . . . . . . 12 (vol‘∅) = (vol*‘∅)
60 ovol0 25441 . . . . . . . . . . . 12 (vol*‘∅) = 0
6159, 60eqtri 2756 . . . . . . . . . . 11 (vol‘∅) = 0
62 0re 11125 . . . . . . . . . . 11 0 ∈ ℝ
6361, 62eqeltri 2829 . . . . . . . . . 10 (vol‘∅) ∈ ℝ
64 elpreima 7000 . . . . . . . . . . 11 (vol Fn dom vol → (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ)))
6552, 53, 64mp2b 10 . . . . . . . . . 10 (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ))
6657, 63, 65mpbir2an 711 . . . . . . . . 9 ∅ ∈ (vol “ ℝ)
6766a1i 11 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (vol “ ℝ))
6856, 67ifclda 4512 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈ (vol “ ℝ))
695, 68eqeltrd 2833 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
70693expa 1118 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
7170ralrimiva 3125 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
725fveq2d 6835 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
73723expa 1118 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
7473mpteq2dva 5188 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) = (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))))
75 renegcl 11435 . . . . . . . 8 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
7675adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → -𝑅 ∈ ℝ)
77 simpl 482 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℝ)
78 iccssre 13336 . . . . . . 7 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
7976, 77, 78syl2anc 584 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅[,]𝑅) ⊆ ℝ)
80 rembl 25488 . . . . . . 7 ℝ ∈ dom vol
8180a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ℝ ∈ dom vol)
82 fvexd 6846 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈ V)
83 eldif 3908 . . . . . . . . 9 (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)))
84 3anass 1094 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅)))
8584a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
86753ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → -𝑅 ∈ ℝ)
87 elicc2 13318 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
8886, 18, 87syl2anc 584 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
89 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
9089, 18absled 15347 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
9189biantrurd 532 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9290, 91bitrd 279 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9385, 88, 923bitr4rd 312 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9493biimpd 229 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9594con3d 152 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))
96953expia 1121 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)))
9796impd 410 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9883, 97biimtrid 242 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9998imp 406 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅)
100 iffalse 4485 . . . . . . . . 9 (¬ (abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
101100fveq2d 6835 . . . . . . . 8 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘∅))
102101, 61eqtrdi 2784 . . . . . . 7 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10399, 102syl 17 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10476, 77, 87syl2anc 584 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
10590biimprd 248 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
106105expd 415 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅)))
1071063expia 1121 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅))))
1081073impd 1349 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
109104, 108sylbid 240 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅))
1101093impia 1117 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅)
111 iftrue 4482 . . . . . . . . . . . 12 ((abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
112111fveq2d 6835 . . . . . . . . . . 11 ((abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
113110, 112syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
11463ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
11575, 78mpancom 688 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
116115sselda 3930 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
1171163adant2 1131 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
118117resqcld 14039 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
119114, 118resubcld 11556 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12075, 87mpancom 688 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
121120adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
12222, 90, 143bitr3rd 310 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅𝑡𝑡𝑅)))
12323, 122bitrd 279 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
124123biimprd 248 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
125124expd 415 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))
1261253expia 1121 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
1271263impd 1349 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
128121, 127sylbid 240 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
1291283impia 1117 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
130119, 129resqrtcld 15332 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
131130renegcld 11555 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
132131, 130, 28syl2anc 584 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
133132, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
134119recnd 11151 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
135134sqrtcld 15354 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
136135, 135subnegd 11490 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
137119, 129sqrtge0d 15335 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
138130, 130, 137, 137addge0d 11704 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
139136breq2d 5107 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
140130, 131subge0d 11718 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
141139, 140bitr3d 281 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
142138, 141mpbid 232 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
143131, 130, 142, 47syl3anc 1373 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
1441352timesd 12375 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
145136, 143, 1443eqtr4d 2778 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
146113, 133, 1453eqtrd 2772 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
1471463expa 1118 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
148147mpteq2dva 5188 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
149 areacirclem3 37823 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1)
150148, 149eqeltrd 2833 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15179, 81, 82, 103, 150iblss2 25754 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15274, 151eqeltrd 2833 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1)
153 dmarea 26914 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1))
1544, 71, 152, 153syl3anbrc 1344 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ∈ dom area)
155 areaval 26921 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
156154, 155syl 17 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
157 elioore 13282 . . . . . 6 (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ)
15853expa 1118 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
159157, 158sylan2 593 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
160159fveq2d 6835 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
161160itgeq2dv 25730 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
162 ioossre 13314 . . . . 5 (-𝑅(,)𝑅) ⊆ ℝ
163162a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ ℝ)
164 eldif 3908 . . . . . 6 (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)))
16575rexrd 11173 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ*)
166 rexr 11169 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
167 elioo2 13293 . . . . . . . . . . . . . 14 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
168165, 166, 167syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
1691683ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
17089biantrurd 532 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
17189, 18absltd 15346 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
172 3anass 1094 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅)))
173172a1i 11 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
174170, 171, 1733bitr4rd 312 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅))
175169, 174bitrd 279 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅))
176175notbid 318 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅))
17718, 17lenltd 11270 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅))
178176, 177bitr4d 282 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡)))
1795adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
180179fveq2d 6835 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
18117anim1i 615 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅))
182 eqle 11226 . . . . . . . . . . . . . . . 16 (((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅)
183181, 182, 1123syl 18 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
184 oveq1 7362 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑡) = 𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2))
185184adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2))
18613adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2))
187185, 186eqtr3d 2770 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2))
188 fvoveq1 7378 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑡↑2) − (𝑡↑2))))
189188negeqd 11365 . . . . . . . . . . . . . . . . . . . 20 ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) = -(√‘((𝑡↑2) − (𝑡↑2))))
190189, 188oveq12d 7373 . . . . . . . . . . . . . . . . . . 19 ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))))
1918recnd 11151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
192191subidd 11471 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0)
193192fveq2d 6835 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = (√‘0))
194193negeqd 11365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = -(√‘0))
195 sqrt0 15155 . . . . . . . . . . . . . . . . . . . . . . . 24 (√‘0) = 0
196195negeqi 11364 . . . . . . . . . . . . . . . . . . . . . . 23 -(√‘0) = -0
197 neg0 11418 . . . . . . . . . . . . . . . . . . . . . . 23 -0 = 0
198196, 197eqtri 2756 . . . . . . . . . . . . . . . . . . . . . 22 -(√‘0) = 0
199194, 198eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = 0)
200193, 195eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = 0)
201199, 200oveq12d 7373 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
2022013ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
203190, 202sylan9eqr 2790 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (0[,]0))
204203fveq2d 6835 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol‘(0[,]0)))
205 iccmbl 25514 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom vol)
20662, 62, 205mp2an 692 . . . . . . . . . . . . . . . . . . 19 (0[,]0) ∈ dom vol
207 mblvol 25478 . . . . . . . . . . . . . . . . . . 19 ((0[,]0) ∈ dom vol → (vol‘(0[,]0)) = (vol*‘(0[,]0)))
208206, 207ax-mp 5 . . . . . . . . . . . . . . . . . 18 (vol‘(0[,]0)) = (vol*‘(0[,]0))
209 0xr 11170 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
210 iccid 13297 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℝ* → (0[,]0) = {0})
211210fveq2d 6835 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ* → (vol*‘(0[,]0)) = (vol*‘{0}))
212209, 211ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]0)) = (vol*‘{0})
213 ovolsn 25443 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ → (vol*‘{0}) = 0)
21462, 213ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘{0}) = 0
215212, 214eqtri 2756 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]0)) = 0
216208, 215eqtri 2756 . . . . . . . . . . . . . . . . 17 (vol‘(0[,]0)) = 0
217204, 216eqtrdi 2784 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
218187, 217syldan 591 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
219183, 218eqtrd 2768 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
220219ex 412 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
221220adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
22218, 17ltnled 11271 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
223222adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
224 simpl1 1192 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ)
22517adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ)
226 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡))
227224, 225, 226leltned 11277 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅))
228223, 227bitr3d 281 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅))
229228, 102biimtrrdi 254 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
230221, 229pm2.61dne 3015 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
231180, 230eqtrd 2768 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0)
232231ex 412 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0))
233178, 232sylbid 240 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))
2342333expia 1121 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)))
235234impd 410 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
236164, 235biimtrid 242 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
237236imp 406 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0)
238163, 237itgss 25760 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
239 negeq 11363 . . . . . . . . . 10 (𝑅 = 0 → -𝑅 = -0)
240239, 197eqtrdi 2784 . . . . . . . . 9 (𝑅 = 0 → -𝑅 = 0)
241 id 22 . . . . . . . . 9 (𝑅 = 0 → 𝑅 = 0)
242240, 241oveq12d 7373 . . . . . . . 8 (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0))
243 iooid 13280 . . . . . . . 8 (0(,)0) = ∅
244242, 243eqtrdi 2784 . . . . . . 7 (𝑅 = 0 → (-𝑅(,)𝑅) = ∅)
245244adantl 481 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅)
246 itgeq1 25721 . . . . . 6 ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
247245, 246syl 17 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
248 itg0 25728 . . . . . 6 ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0
249 sq0 14106 . . . . . . . . . 10 (0↑2) = 0
250249oveq2i 7366 . . . . . . . . 9 (π · (0↑2)) = (π · 0)
251 picn 26414 . . . . . . . . . 10 π ∈ ℂ
252251mul01i 11314 . . . . . . . . 9 (π · 0) = 0
253250, 252eqtr2i 2757 . . . . . . . 8 0 = (π · (0↑2))
254 oveq1 7362 . . . . . . . . 9 (𝑅 = 0 → (𝑅↑2) = (0↑2))
255254oveq2d 7371 . . . . . . . 8 (𝑅 = 0 → (π · (𝑅↑2)) = (π · (0↑2)))
256253, 255eqtr4id 2787 . . . . . . 7 (𝑅 = 0 → 0 = (π · (𝑅↑2)))
257256adantl 481 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2)))
258248, 257eqtrid 2780 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
259247, 258eqtrd 2768 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
260 simp1 1136 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ)
261 0red 11126 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ∈ ℝ)
262 simpr 484 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ≤ 𝑅)
263261, 77, 262leltned 11277 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0 < 𝑅𝑅 ≠ 0))
264263biimp3ar 1472 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 0 < 𝑅)
265260, 264elrpd 12937 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
2662653expa 1118 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
267157, 16syl 17 . . . . . . . . . . 11 (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ)
268267adantl 481 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ)
269 rpre 12905 . . . . . . . . . . 11 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
270269adantr 480 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ)
271269renegcld 11555 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
272271rexrd 11173 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ*)
273 rpxr 12906 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
274272, 273, 167syl2anc 584 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
275 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
276269adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
277275, 276absltd 15346 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
278277biimprd 248 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
279278exp4b 430 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅))))
2802793impd 1349 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
281274, 280sylbid 240 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅))
282281imp 406 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅)
283268, 270, 282ltled 11272 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅)
284283, 112syl 17 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
285269resqcld 14039 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
286285recnd 11151 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
287286adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
288191adantl 481 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
289287, 288subcld 11483 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
290289sqrtcld 15354 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
291290, 290subnegd 11490 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
292157, 291sylan2 593 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
293285adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
2948adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
295293, 294resubcld 11556 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
296157, 295sylan2 593 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
297 0red 11126 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ)
29816adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
29919adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
300 rpge0 12910 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
301300adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
302298, 276, 299, 301lt2sqd 14170 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2)))
30312adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
304303breq1d 5105 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2)))
305302, 277, 3043bitr3rd 310 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
306294, 293posdifd 11715 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
307305, 306bitr3d 281 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
308307biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
309308exp4b 430 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2))))))
3103093impd 1349 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
311274, 310sylbid 240 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
312311imp 406 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2)))
313297, 296, 312ltled 11272 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
314296, 313resqrtcld 15332 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
315314renegcld 11555 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
316315, 314, 28syl2anc 584 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
317316, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
318296, 313sqrtge0d 15335 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
319314, 314, 318, 318addge0d 11704 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
320292breq2d 5107 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
321314, 315subge0d 11718 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
322320, 321bitr3d 281 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
323319, 322mpbid 232 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
324315, 314, 323, 47syl3anc 1373 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
325317, 324eqtrd 2768 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
326 ax-resscn 11074 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
327326a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ℝ ⊆ ℂ)
328271, 269, 78syl2anc 584 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
329 rpcn 12907 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
330329sqcld 14058 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
331330adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
332328sselda 3930 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ)
333332recnd 11151 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ)
334329adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
335 rpne0 12913 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+𝑅 ≠ 0)
336335adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
337333, 334, 336divcld 11908 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ)
338 asincl 26830 . . . . . . . . . . . . . . . . 17 ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
339337, 338syl 17 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
340 1cnd 11118 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
341337sqcld 14058 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ)
342340, 341subcld 11483 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ)
343342sqrtcld 15354 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ)
344337, 343mulcld 11143 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈ ℂ)
345339, 344addcld 11142 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈ ℂ)
346331, 345mulcld 11143 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈ ℂ)
347 tgioo4 24740 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
348 eqid 2733 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
349 iccntr 24757 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
350271, 269, 349syl2anc 584 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
351327, 328, 346, 347, 348, 350dvmptntr 25922 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))))
352 areacirclem1 37821 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
353351, 352eqtrd 2768 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
354353adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
355 oveq1 7362 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2))
356355oveq2d 7371 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2)))
357356fveq2d 6835 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
358357oveq2d 7371 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
359358adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
360 simpr 484 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅))
361 ovexd 7390 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈ V)
362354, 359, 360, 361fvmptd 6945 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
363157, 290sylan2 593 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
3643632timesd 12375 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
365362, 364eqtrd 2768 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
366292, 325, 3653eqtr4rd 2779 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
367284, 366eqtr4d 2771 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡))
368367itgeq2dv 25730 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡)
369269, 269, 300, 300addge0d 11704 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅 + 𝑅))
370329, 329subnegd 11490 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑅 − -𝑅) = (𝑅 + 𝑅))
371370breq2d 5107 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ 0 ≤ (𝑅 + 𝑅)))
372269, 271subge0d 11718 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ -𝑅𝑅))
373371, 372bitr3d 281 . . . . . . . 8 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 + 𝑅) ↔ -𝑅𝑅))
374369, 373mpbid 232 . . . . . . 7 (𝑅 ∈ ℝ+ → -𝑅𝑅)
375 2cn 12211 . . . . . . . . . . 11 2 ∈ ℂ
376162, 326sstri 3940 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ ℂ
377 ssid 3953 . . . . . . . . . . 11 ℂ ⊆ ℂ
378375, 376, 3773pm3.2i 1340 . . . . . . . . . 10 (2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ)
379 cncfmptc 24852 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
380378, 379mp1i 13 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
381 ioossicc 13340 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)
382 resmpt 5993 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))))
383381, 382ax-mp 5 . . . . . . . . . 10 ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))
384 areacirclem2 37822 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
385269, 300, 384syl2anc 584 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
386 rescncf 24837 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)))
387381, 385, 386mpsyl 68 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
388383, 387eqeltrrid 2838 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
389380, 388mulcncf 25393 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
390353, 389eqeltrd 2833 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
391381a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅))
392 ioombl 25513 . . . . . . . . . . 11 (-𝑅(,)𝑅) ∈ dom vol
393392a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ∈ dom vol)
394 ovexd 7390 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈ V)
395 areacirclem3 37823 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
396391, 393, 394, 395iblss 25753 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
397269, 300, 396syl2anc 584 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
398353, 397eqeltrd 2833 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ 𝐿1)
399 areacirclem4 37824 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
400271, 269, 374, 390, 398, 399ftc2nc 37815 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)))
401 eqidd 2734 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))
402 fvoveq1 7378 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅)))
403 oveq1 7362 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅))
404403oveq1d 7370 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2))
405404oveq2d 7371 . . . . . . . . . . . . . . 15 (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2)))
406405fveq2d 6835 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((𝑅 / 𝑅)↑2))))
407403, 406oveq12d 7373 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))
408402, 407oveq12d 7373 . . . . . . . . . . . 12 (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))
409408oveq2d 7371 . . . . . . . . . . 11 (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
410409adantl 481 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
411 ubicc2 13372 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → 𝑅 ∈ (-𝑅[,]𝑅))
412272, 273, 374, 411syl3anc 1373 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ (-𝑅[,]𝑅))
413 ovexd 7390 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V)
414401, 410, 412, 413fvmptd 6945 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
415329, 335dividd 11906 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) = 1)
416415fveq2d 6835 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (arcsin‘1))
417 asin1 26851 . . . . . . . . . . . . 13 (arcsin‘1) = (π / 2)
418416, 417eqtrdi 2784 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (π / 2))
419415oveq1d 7370 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = (1↑2))
420 sq1 14109 . . . . . . . . . . . . . . . . . . 19 (1↑2) = 1
421419, 420eqtrdi 2784 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = 1)
422421oveq2d 7371 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = (1 − 1))
423 1cnd 11118 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 1 ∈ ℂ)
424423subidd 11471 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − 1) = 0)
425422, 424eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = 0)
426425fveq2d 6835 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = (√‘0))
427426, 195eqtrdi 2784 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0)
428427oveq2d 7371 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0))
429329, 329, 335divcld 11908 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) ∈ ℂ)
430429mul01d 11323 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · 0) = 0)
431428, 430eqtrd 2768 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = 0)
432418, 431oveq12d 7373 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) + 0))
433 2ne0 12240 . . . . . . . . . . . . . 14 2 ≠ 0
434251, 375, 433divcli 11874 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
435434a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (π / 2) ∈ ℂ)
436435addridd 11324 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((π / 2) + 0) = (π / 2))
437432, 436eqtrd 2768 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2))
438437oveq2d 7371 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π / 2)))
439414, 438eqtrd 2768 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π / 2)))
440 fvoveq1 7378 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅)))
441 oveq1 7362 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅))
442441oveq1d 7370 . . . . . . . . . . . . . . . 16 (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2))
443442oveq2d 7371 . . . . . . . . . . . . . . 15 (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2)))
444443fveq2d 6835 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((-𝑅 / 𝑅)↑2))))
445441, 444oveq12d 7373 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))
446440, 445oveq12d 7373 . . . . . . . . . . . 12 (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
447446adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
448447oveq2d 7371 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
449 lbicc2 13371 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → -𝑅 ∈ (-𝑅[,]𝑅))
450272, 273, 374, 449syl3anc 1373 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → -𝑅 ∈ (-𝑅[,]𝑅))
451 ovexd 7390 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) ∈ V)
452401, 448, 450, 451fvmptd 6945 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
453329, 329, 335divnegd 11921 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = (-𝑅 / 𝑅))
454415negeqd 11365 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = -1)
455453, 454eqtr3d 2770 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) = -1)
456455fveq2d 6835 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = (arcsin‘-1))
457 ax-1cn 11075 . . . . . . . . . . . . . . 15 1 ∈ ℂ
458 asinneg 26843 . . . . . . . . . . . . . . 15 (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1))
459457, 458ax-mp 5 . . . . . . . . . . . . . 14 (arcsin‘-1) = -(arcsin‘1)
460417negeqi 11364 . . . . . . . . . . . . . 14 -(arcsin‘1) = -(π / 2)
461459, 460eqtri 2756 . . . . . . . . . . . . 13 (arcsin‘-1) = -(π / 2)
462456, 461eqtrdi 2784 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = -(π / 2))
463455oveq1d 7370 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = (-1↑2))
464 neg1sqe1 14110 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
465463, 464eqtrdi 2784 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = 1)
466465oveq2d 7371 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = (1 − 1))
467466, 424eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = 0)
468467fveq2d 6835 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = (√‘0))
469468, 195eqtrdi 2784 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0)
470469oveq2d 7371 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0))
471271recnd 11151 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℂ)
472471, 329, 335divcld 11908 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) ∈ ℂ)
473472mul01d 11323 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · 0) = 0)
474470, 473eqtrd 2768 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = 0)
475462, 474oveq12d 7373 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = (-(π / 2) + 0))
476434negcli 11440 . . . . . . . . . . . . 13 -(π / 2) ∈ ℂ
477476a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → -(π / 2) ∈ ℂ)
478477addridd 11324 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (-(π / 2) + 0) = -(π / 2))
479475, 478eqtrd 2768 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = -(π / 2))
480479oveq2d 7371 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π / 2)))
481452, 480eqtrd 2768 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π / 2)))
482439, 481oveq12d 7373 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
483434, 434subnegi 11451 . . . . . . . . . . 11 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
484 pidiv2halves 26423 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
485483, 484eqtri 2756 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = π
486485a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((π / 2) − -(π / 2)) = π)
487486oveq2d 7371 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = ((𝑅↑2) · π))
488330, 435, 477subdid 11584 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
489251a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → π ∈ ℂ)
490330, 489mulcomd 11144 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · π) = (π · (𝑅↑2)))
491487, 488, 4903eqtr3d 2776 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π · (𝑅↑2)))
492482, 491eqtrd 2768 . . . . . 6 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2)))
493368, 400, 4923eqtrd 2772 . . . . 5 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
494266, 493syl 17 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
495259, 494pm2.61dane 3016 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
496161, 238, 4953eqtr3d 2776 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡 = (π · (𝑅↑2)))
497156, 496eqtrd 2768 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  wss 3898  c0 4282  ifcif 4476  {csn 4577   class class class wbr 5095  {copab 5157  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  cres 5623  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  +∞cpnf 11154  *cxr 11156   < clt 11157  cle 11158  cmin 11355  -cneg 11356   / cdiv 11785  2c2 12191  +crp 12896  (,)cioo 13252  [,]cicc 13255  cexp 13975  csqrt 15147  abscabs 15148  πcpi 15980  TopOpenctopn 17332  topGenctg 17348  fldccnfld 21300  intcnt 22952  cnccncf 24816  vol*covol 25410  volcvol 25411  𝐿1cibl 25565  citg 25566   D cdv 25811  arcsincasin 26819  areacarea 26912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-symdif 4202  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-tan 15985  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-ovol 25412  df-vol 25413  df-mbf 25567  df-itg1 25568  df-itg2 25569  df-ibl 25570  df-itg 25571  df-0p 25618  df-limc 25814  df-dv 25815  df-log 26512  df-cxp 26513  df-asin 26822  df-area 26913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator