Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirc Structured version   Visualization version   GIF version

Theorem areacirc 35002
Description: The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
Assertion
Ref Expression
areacirc ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem areacirc
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . . . 6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
2 opabssxp 5643 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ × ℝ)
31, 2eqsstri 4001 . . . . 5 𝑆 ⊆ (ℝ × ℝ)
43a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ⊆ (ℝ × ℝ))
51areacirclem5 35001 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
6 resqcl 13491 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
763ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
8 resqcl 13491 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
983ad2ant3 1131 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
107, 9resubcld 11068 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
1110adantr 483 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12 absresq 14662 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
13123ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
1413breq1d 5076 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
15 recn 10627 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
1615abscld 14796 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
17163ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
18 simp1 1132 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
1915absge0d 14804 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
20193ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
21 simp2 1133 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2217, 18, 20, 21le2sqd 13621 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
237, 9subge0d 11230 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2414, 22, 233bitr4d 313 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
2524biimpa 479 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
2611, 25resqrtcld 14777 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
2726renegcld 11067 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
28 iccmbl 24167 . . . . . . . . . 10 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
2927, 26, 28syl2anc 586 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
30 mblvol 24131 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3129, 30syl 17 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3211, 25sqrtge0d 14780 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
3326, 26, 32, 32addge0d 11216 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
34 recn 10627 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
3534sqcld 13509 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
36353ad2ant1 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
3715sqcld 13509 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
38373ad2ant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
3936, 38subcld 10997 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
4039sqrtcld 14797 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4140adantr 483 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4241, 41subnegd 11004 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
4342breq2d 5078 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
4426, 27subge0d 11230 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4543, 44bitr3d 283 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4633, 45mpbid 234 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
47 ovolicc 24124 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4827, 26, 46, 47syl3anc 1367 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4931, 48eqtrd 2856 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
5026, 27resubcld 11068 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈ ℝ)
5149, 50eqeltrd 2913 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)
52 volf 24130 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
53 ffn 6514 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
54 elpreima 6828 . . . . . . . . . 10 (vol Fn dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)))
5552, 53, 54mp2b 10 . . . . . . . . 9 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ))
5629, 51, 55sylanbrc 585 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ))
57 0mbl 24140 . . . . . . . . . 10 ∅ ∈ dom vol
58 mblvol 24131 . . . . . . . . . . . . 13 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
5957, 58ax-mp 5 . . . . . . . . . . . 12 (vol‘∅) = (vol*‘∅)
60 ovol0 24094 . . . . . . . . . . . 12 (vol*‘∅) = 0
6159, 60eqtri 2844 . . . . . . . . . . 11 (vol‘∅) = 0
62 0re 10643 . . . . . . . . . . 11 0 ∈ ℝ
6361, 62eqeltri 2909 . . . . . . . . . 10 (vol‘∅) ∈ ℝ
64 elpreima 6828 . . . . . . . . . . 11 (vol Fn dom vol → (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ)))
6552, 53, 64mp2b 10 . . . . . . . . . 10 (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ))
6657, 63, 65mpbir2an 709 . . . . . . . . 9 ∅ ∈ (vol “ ℝ)
6766a1i 11 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (vol “ ℝ))
6856, 67ifclda 4501 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈ (vol “ ℝ))
695, 68eqeltrd 2913 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
70693expa 1114 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
7170ralrimiva 3182 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
725fveq2d 6674 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
73723expa 1114 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
7473mpteq2dva 5161 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) = (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))))
75 renegcl 10949 . . . . . . . 8 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
7675adantr 483 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → -𝑅 ∈ ℝ)
77 simpl 485 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℝ)
78 iccssre 12819 . . . . . . 7 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
7976, 77, 78syl2anc 586 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅[,]𝑅) ⊆ ℝ)
80 rembl 24141 . . . . . . 7 ℝ ∈ dom vol
8180a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ℝ ∈ dom vol)
82 fvexd 6685 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈ V)
83 eldif 3946 . . . . . . . . 9 (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)))
84 3anass 1091 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅)))
8584a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
86753ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → -𝑅 ∈ ℝ)
87 elicc2 12802 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
8886, 18, 87syl2anc 586 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
89 simp3 1134 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
9089, 18absled 14790 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
9189biantrurd 535 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9290, 91bitrd 281 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9385, 88, 923bitr4rd 314 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9493biimpd 231 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9594con3d 155 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))
96953expia 1117 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)))
9796impd 413 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9883, 97syl5bi 244 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9998imp 409 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅)
100 iffalse 4476 . . . . . . . . 9 (¬ (abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
101100fveq2d 6674 . . . . . . . 8 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘∅))
102101, 61syl6eq 2872 . . . . . . 7 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10399, 102syl 17 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10476, 77, 87syl2anc 586 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
10590biimprd 250 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
106105expd 418 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅)))
1071063expia 1117 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅))))
1081073impd 1344 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
109104, 108sylbid 242 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅))
1101093impia 1113 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅)
111 iftrue 4473 . . . . . . . . . . . 12 ((abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
112111fveq2d 6674 . . . . . . . . . . 11 ((abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
113110, 112syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
11463ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
11575, 78mpancom 686 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
116115sselda 3967 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
1171163adant2 1127 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
118117resqcld 13612 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
119114, 118resubcld 11068 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12075, 87mpancom 686 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
121120adantr 483 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
12222, 90, 143bitr3rd 312 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅𝑡𝑡𝑅)))
12323, 122bitrd 281 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
124123biimprd 250 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
125124expd 418 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))
1261253expia 1117 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
1271263impd 1344 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
128121, 127sylbid 242 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
1291283impia 1113 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
130119, 129resqrtcld 14777 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
131130renegcld 11067 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
132131, 130, 28syl2anc 586 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
133132, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
134119recnd 10669 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
135134sqrtcld 14797 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
136135, 135subnegd 11004 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
137119, 129sqrtge0d 14780 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
138130, 130, 137, 137addge0d 11216 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
139136breq2d 5078 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
140130, 131subge0d 11230 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
141139, 140bitr3d 283 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
142138, 141mpbid 234 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
143131, 130, 142, 47syl3anc 1367 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
1441352timesd 11881 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
145136, 143, 1443eqtr4d 2866 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
146113, 133, 1453eqtrd 2860 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
1471463expa 1114 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
148147mpteq2dva 5161 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
149 areacirclem3 34999 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1)
150148, 149eqeltrd 2913 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15179, 81, 82, 103, 150iblss2 24406 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15274, 151eqeltrd 2913 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1)
153 dmarea 25535 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1))
1544, 71, 152, 153syl3anbrc 1339 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ∈ dom area)
155 areaval 25542 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
156154, 155syl 17 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
157 elioore 12769 . . . . . 6 (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ)
15853expa 1114 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
159157, 158sylan2 594 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
160159fveq2d 6674 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
161160itgeq2dv 24382 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
162 ioossre 12799 . . . . 5 (-𝑅(,)𝑅) ⊆ ℝ
163162a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ ℝ)
164 eldif 3946 . . . . . 6 (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)))
16575rexrd 10691 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ*)
166 rexr 10687 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
167 elioo2 12780 . . . . . . . . . . . . . 14 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
168165, 166, 167syl2anc 586 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
1691683ad2ant1 1129 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
17089biantrurd 535 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
17189, 18absltd 14789 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
172 3anass 1091 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅)))
173172a1i 11 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
174170, 171, 1733bitr4rd 314 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅))
175169, 174bitrd 281 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅))
176175notbid 320 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅))
17718, 17lenltd 10786 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅))
178176, 177bitr4d 284 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡)))
1795adantr 483 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
180179fveq2d 6674 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
18117anim1i 616 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅))
182 eqle 10742 . . . . . . . . . . . . . . . 16 (((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅)
183181, 182, 1123syl 18 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
184 oveq1 7163 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑡) = 𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2))
185184adantl 484 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2))
18613adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2))
187185, 186eqtr3d 2858 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2))
188 fvoveq1 7179 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑡↑2) − (𝑡↑2))))
189188negeqd 10880 . . . . . . . . . . . . . . . . . . . 20 ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) = -(√‘((𝑡↑2) − (𝑡↑2))))
190189, 188oveq12d 7174 . . . . . . . . . . . . . . . . . . 19 ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))))
1918recnd 10669 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
192191subidd 10985 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0)
193192fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = (√‘0))
194193negeqd 10880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = -(√‘0))
195 sqrt0 14601 . . . . . . . . . . . . . . . . . . . . . . . 24 (√‘0) = 0
196195negeqi 10879 . . . . . . . . . . . . . . . . . . . . . . 23 -(√‘0) = -0
197 neg0 10932 . . . . . . . . . . . . . . . . . . . . . . 23 -0 = 0
198196, 197eqtri 2844 . . . . . . . . . . . . . . . . . . . . . 22 -(√‘0) = 0
199194, 198syl6eq 2872 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = 0)
200193, 195syl6eq 2872 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = 0)
201199, 200oveq12d 7174 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
2022013ad2ant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
203190, 202sylan9eqr 2878 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (0[,]0))
204203fveq2d 6674 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol‘(0[,]0)))
205 iccmbl 24167 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom vol)
20662, 62, 205mp2an 690 . . . . . . . . . . . . . . . . . . 19 (0[,]0) ∈ dom vol
207 mblvol 24131 . . . . . . . . . . . . . . . . . . 19 ((0[,]0) ∈ dom vol → (vol‘(0[,]0)) = (vol*‘(0[,]0)))
208206, 207ax-mp 5 . . . . . . . . . . . . . . . . . 18 (vol‘(0[,]0)) = (vol*‘(0[,]0))
209 0xr 10688 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
210 iccid 12784 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℝ* → (0[,]0) = {0})
211210fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ* → (vol*‘(0[,]0)) = (vol*‘{0}))
212209, 211ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]0)) = (vol*‘{0})
213 ovolsn 24096 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ → (vol*‘{0}) = 0)
21462, 213ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘{0}) = 0
215212, 214eqtri 2844 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]0)) = 0
216208, 215eqtri 2844 . . . . . . . . . . . . . . . . 17 (vol‘(0[,]0)) = 0
217204, 216syl6eq 2872 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
218187, 217syldan 593 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
219183, 218eqtrd 2856 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
220219ex 415 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
221220adantr 483 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
22218, 17ltnled 10787 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
223222adantr 483 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
224 simpl1 1187 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ)
22517adantr 483 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ)
226 simpr 487 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡))
227224, 225, 226leltned 10793 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅))
228223, 227bitr3d 283 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅))
229228, 102syl6bir 256 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
230221, 229pm2.61dne 3103 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
231180, 230eqtrd 2856 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0)
232231ex 415 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0))
233178, 232sylbid 242 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))
2342333expia 1117 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)))
235234impd 413 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
236164, 235syl5bi 244 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
237236imp 409 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0)
238163, 237itgss 24412 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
239 negeq 10878 . . . . . . . . . 10 (𝑅 = 0 → -𝑅 = -0)
240239, 197syl6eq 2872 . . . . . . . . 9 (𝑅 = 0 → -𝑅 = 0)
241 id 22 . . . . . . . . 9 (𝑅 = 0 → 𝑅 = 0)
242240, 241oveq12d 7174 . . . . . . . 8 (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0))
243 iooid 12767 . . . . . . . 8 (0(,)0) = ∅
244242, 243syl6eq 2872 . . . . . . 7 (𝑅 = 0 → (-𝑅(,)𝑅) = ∅)
245244adantl 484 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅)
246 itgeq1 24373 . . . . . 6 ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
247245, 246syl 17 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
248 itg0 24380 . . . . . 6 ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0
249 oveq1 7163 . . . . . . . . 9 (𝑅 = 0 → (𝑅↑2) = (0↑2))
250249oveq2d 7172 . . . . . . . 8 (𝑅 = 0 → (π · (𝑅↑2)) = (π · (0↑2)))
251 sq0 13556 . . . . . . . . . 10 (0↑2) = 0
252251oveq2i 7167 . . . . . . . . 9 (π · (0↑2)) = (π · 0)
253 picn 25045 . . . . . . . . . 10 π ∈ ℂ
254253mul01i 10830 . . . . . . . . 9 (π · 0) = 0
255252, 254eqtr2i 2845 . . . . . . . 8 0 = (π · (0↑2))
256250, 255syl6reqr 2875 . . . . . . 7 (𝑅 = 0 → 0 = (π · (𝑅↑2)))
257256adantl 484 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2)))
258248, 257syl5eq 2868 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
259247, 258eqtrd 2856 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
260 simp1 1132 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ)
261 0red 10644 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ∈ ℝ)
262 simpr 487 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ≤ 𝑅)
263261, 77, 262leltned 10793 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0 < 𝑅𝑅 ≠ 0))
264263biimp3ar 1466 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 0 < 𝑅)
265260, 264elrpd 12429 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
2662653expa 1114 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
267157, 16syl 17 . . . . . . . . . . 11 (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ)
268267adantl 484 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ)
269 rpre 12398 . . . . . . . . . . 11 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
270269adantr 483 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ)
271269renegcld 11067 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
272271rexrd 10691 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ*)
273 rpxr 12399 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
274272, 273, 167syl2anc 586 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
275 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
276269adantr 483 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
277275, 276absltd 14789 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
278277biimprd 250 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
279278exp4b 433 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅))))
2802793impd 1344 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
281274, 280sylbid 242 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅))
282281imp 409 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅)
283268, 270, 282ltled 10788 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅)
284283, 112syl 17 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
285269resqcld 13612 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
286285recnd 10669 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
287286adantr 483 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
288191adantl 484 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
289287, 288subcld 10997 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
290289sqrtcld 14797 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
291290, 290subnegd 11004 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
292157, 291sylan2 594 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
293285adantr 483 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
2948adantl 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
295293, 294resubcld 11068 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
296157, 295sylan2 594 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
297 0red 10644 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ)
29816adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
29919adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
300 rpge0 12403 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
301300adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
302298, 276, 299, 301lt2sqd 13620 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2)))
30312adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
304303breq1d 5076 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2)))
305302, 277, 3043bitr3rd 312 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
306294, 293posdifd 11227 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
307305, 306bitr3d 283 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
308307biimpd 231 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
309308exp4b 433 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2))))))
3103093impd 1344 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
311274, 310sylbid 242 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
312311imp 409 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2)))
313297, 296, 312ltled 10788 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
314296, 313resqrtcld 14777 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
315314renegcld 11067 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
316315, 314, 28syl2anc 586 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
317316, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
318296, 313sqrtge0d 14780 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
319314, 314, 318, 318addge0d 11216 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
320292breq2d 5078 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
321314, 315subge0d 11230 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
322320, 321bitr3d 283 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
323319, 322mpbid 234 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
324315, 314, 323, 47syl3anc 1367 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
325317, 324eqtrd 2856 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
326 ax-resscn 10594 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
327326a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ℝ ⊆ ℂ)
328271, 269, 78syl2anc 586 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
329 rpcn 12400 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
330329sqcld 13509 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
331330adantr 483 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
332328sselda 3967 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ)
333332recnd 10669 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ)
334329adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
335 rpne0 12406 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+𝑅 ≠ 0)
336335adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
337333, 334, 336divcld 11416 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ)
338 asincl 25451 . . . . . . . . . . . . . . . . 17 ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
339337, 338syl 17 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
340 1cnd 10636 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
341337sqcld 13509 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ)
342340, 341subcld 10997 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ)
343342sqrtcld 14797 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ)
344337, 343mulcld 10661 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈ ℂ)
345339, 344addcld 10660 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈ ℂ)
346331, 345mulcld 10661 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈ ℂ)
347 eqid 2821 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
348347tgioo2 23411 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
349 iccntr 23429 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
350271, 269, 349syl2anc 586 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
351327, 328, 346, 348, 347, 350dvmptntr 24568 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))))
352 areacirclem1 34997 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
353351, 352eqtrd 2856 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
354353adantr 483 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
355 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2))
356355oveq2d 7172 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2)))
357356fveq2d 6674 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
358357oveq2d 7172 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
359358adantl 484 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
360 simpr 487 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅))
361 ovexd 7191 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈ V)
362354, 359, 360, 361fvmptd 6775 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
363157, 290sylan2 594 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
3643632timesd 11881 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
365362, 364eqtrd 2856 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
366292, 325, 3653eqtr4rd 2867 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
367284, 366eqtr4d 2859 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡))
368367itgeq2dv 24382 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡)
369269, 269, 300, 300addge0d 11216 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅 + 𝑅))
370329, 329subnegd 11004 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑅 − -𝑅) = (𝑅 + 𝑅))
371370breq2d 5078 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ 0 ≤ (𝑅 + 𝑅)))
372269, 271subge0d 11230 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ -𝑅𝑅))
373371, 372bitr3d 283 . . . . . . . 8 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 + 𝑅) ↔ -𝑅𝑅))
374369, 373mpbid 234 . . . . . . 7 (𝑅 ∈ ℝ+ → -𝑅𝑅)
375 2cn 11713 . . . . . . . . . . 11 2 ∈ ℂ
376162, 326sstri 3976 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ ℂ
377 ssid 3989 . . . . . . . . . . 11 ℂ ⊆ ℂ
378375, 376, 3773pm3.2i 1335 . . . . . . . . . 10 (2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ)
379 cncfmptc 23519 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
380378, 379mp1i 13 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
381 ioossicc 12823 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)
382 resmpt 5905 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))))
383381, 382ax-mp 5 . . . . . . . . . 10 ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))
384 areacirclem2 34998 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
385269, 300, 384syl2anc 586 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
386 rescncf 23505 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)))
387381, 385, 386mpsyl 68 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
388383, 387eqeltrrid 2918 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
389380, 388mulcncf 24047 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
390353, 389eqeltrd 2913 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
391381a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅))
392 ioombl 24166 . . . . . . . . . . 11 (-𝑅(,)𝑅) ∈ dom vol
393392a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ∈ dom vol)
394 ovexd 7191 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈ V)
395 areacirclem3 34999 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
396391, 393, 394, 395iblss 24405 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
397269, 300, 396syl2anc 586 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
398353, 397eqeltrd 2913 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ 𝐿1)
399 areacirclem4 35000 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
400271, 269, 374, 390, 398, 399ftc2nc 34991 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)))
401 eqidd 2822 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))
402 fvoveq1 7179 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅)))
403 oveq1 7163 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅))
404403oveq1d 7171 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2))
405404oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2)))
406405fveq2d 6674 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((𝑅 / 𝑅)↑2))))
407403, 406oveq12d 7174 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))
408402, 407oveq12d 7174 . . . . . . . . . . . 12 (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))
409408oveq2d 7172 . . . . . . . . . . 11 (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
410409adantl 484 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
411 ubicc2 12854 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → 𝑅 ∈ (-𝑅[,]𝑅))
412272, 273, 374, 411syl3anc 1367 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ (-𝑅[,]𝑅))
413 ovexd 7191 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V)
414401, 410, 412, 413fvmptd 6775 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
415329, 335dividd 11414 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) = 1)
416415fveq2d 6674 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (arcsin‘1))
417 asin1 25472 . . . . . . . . . . . . 13 (arcsin‘1) = (π / 2)
418416, 417syl6eq 2872 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (π / 2))
419415oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = (1↑2))
420 sq1 13559 . . . . . . . . . . . . . . . . . . 19 (1↑2) = 1
421419, 420syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = 1)
422421oveq2d 7172 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = (1 − 1))
423 1cnd 10636 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 1 ∈ ℂ)
424423subidd 10985 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − 1) = 0)
425422, 424eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = 0)
426425fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = (√‘0))
427426, 195syl6eq 2872 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0)
428427oveq2d 7172 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0))
429329, 329, 335divcld 11416 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) ∈ ℂ)
430429mul01d 10839 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · 0) = 0)
431428, 430eqtrd 2856 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = 0)
432418, 431oveq12d 7174 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) + 0))
433 2ne0 11742 . . . . . . . . . . . . . 14 2 ≠ 0
434253, 375, 433divcli 11382 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
435434a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (π / 2) ∈ ℂ)
436435addid1d 10840 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((π / 2) + 0) = (π / 2))
437432, 436eqtrd 2856 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2))
438437oveq2d 7172 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π / 2)))
439414, 438eqtrd 2856 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π / 2)))
440 fvoveq1 7179 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅)))
441 oveq1 7163 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅))
442441oveq1d 7171 . . . . . . . . . . . . . . . 16 (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2))
443442oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2)))
444443fveq2d 6674 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((-𝑅 / 𝑅)↑2))))
445441, 444oveq12d 7174 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))
446440, 445oveq12d 7174 . . . . . . . . . . . 12 (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
447446adantl 484 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
448447oveq2d 7172 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
449 lbicc2 12853 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → -𝑅 ∈ (-𝑅[,]𝑅))
450272, 273, 374, 449syl3anc 1367 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → -𝑅 ∈ (-𝑅[,]𝑅))
451 ovexd 7191 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) ∈ V)
452401, 448, 450, 451fvmptd 6775 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
453329, 329, 335divnegd 11429 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = (-𝑅 / 𝑅))
454415negeqd 10880 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = -1)
455453, 454eqtr3d 2858 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) = -1)
456455fveq2d 6674 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = (arcsin‘-1))
457 ax-1cn 10595 . . . . . . . . . . . . . . 15 1 ∈ ℂ
458 asinneg 25464 . . . . . . . . . . . . . . 15 (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1))
459457, 458ax-mp 5 . . . . . . . . . . . . . 14 (arcsin‘-1) = -(arcsin‘1)
460417negeqi 10879 . . . . . . . . . . . . . 14 -(arcsin‘1) = -(π / 2)
461459, 460eqtri 2844 . . . . . . . . . . . . 13 (arcsin‘-1) = -(π / 2)
462456, 461syl6eq 2872 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = -(π / 2))
463455oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = (-1↑2))
464 neg1sqe1 13560 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
465463, 464syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = 1)
466465oveq2d 7172 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = (1 − 1))
467466, 424eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = 0)
468467fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = (√‘0))
469468, 195syl6eq 2872 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0)
470469oveq2d 7172 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0))
471271recnd 10669 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℂ)
472471, 329, 335divcld 11416 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) ∈ ℂ)
473472mul01d 10839 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · 0) = 0)
474470, 473eqtrd 2856 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = 0)
475462, 474oveq12d 7174 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = (-(π / 2) + 0))
476434negcli 10954 . . . . . . . . . . . . 13 -(π / 2) ∈ ℂ
477476a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → -(π / 2) ∈ ℂ)
478477addid1d 10840 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (-(π / 2) + 0) = -(π / 2))
479475, 478eqtrd 2856 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = -(π / 2))
480479oveq2d 7172 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π / 2)))
481452, 480eqtrd 2856 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π / 2)))
482439, 481oveq12d 7174 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
483434, 434subnegi 10965 . . . . . . . . . . 11 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
484 pidiv2halves 25053 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
485483, 484eqtri 2844 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = π
486485a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((π / 2) − -(π / 2)) = π)
487486oveq2d 7172 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = ((𝑅↑2) · π))
488330, 435, 477subdid 11096 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
489253a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → π ∈ ℂ)
490330, 489mulcomd 10662 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · π) = (π · (𝑅↑2)))
491487, 488, 4903eqtr3d 2864 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π · (𝑅↑2)))
492482, 491eqtrd 2856 . . . . . 6 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2)))
493368, 400, 4923eqtrd 2860 . . . . 5 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
494266, 493syl 17 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
495259, 494pm2.61dane 3104 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
496161, 238, 4953eqtr3d 2864 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡 = (π · (𝑅↑2)))
497156, 496eqtrd 2856 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cdif 3933  wss 3936  c0 4291  ifcif 4467  {csn 4567   class class class wbr 5066  {copab 5128  cmpt 5146   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  +crp 12390  (,)cioo 12739  [,]cicc 12742  cexp 13430  csqrt 14592  abscabs 14593  πcpi 15420  TopOpenctopn 16695  topGenctg 16711  fldccnfld 20545  intcnt 21625  cnccncf 23484  vol*covol 24063  volcvol 24064  𝐿1cibl 24218  citg 24219   D cdv 24461  arcsincasin 25440  areacarea 25533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141  df-asin 25443  df-area 25534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator