Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirc Structured version   Visualization version   GIF version

Theorem areacirc 35556
Description: The area of a circle of radius 𝑅 is π · 𝑅↑2. This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
Assertion
Ref Expression
areacirc ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem areacirc
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . . . 6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
2 opabssxp 5625 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ × ℝ)
31, 2eqsstri 3921 . . . . 5 𝑆 ⊆ (ℝ × ℝ)
43a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ⊆ (ℝ × ℝ))
51areacirclem5 35555 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
6 resqcl 13661 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
763ad2ant1 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
8 resqcl 13661 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
983ad2ant3 1137 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
107, 9resubcld 11225 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
1110adantr 484 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12 absresq 14831 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
13123ad2ant3 1137 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
1413breq1d 5049 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
15 recn 10784 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
1615abscld 14965 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
17163ad2ant3 1137 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
18 simp1 1138 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
1915absge0d 14973 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
20193ad2ant3 1137 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
21 simp2 1139 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2217, 18, 20, 21le2sqd 13791 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
237, 9subge0d 11387 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2414, 22, 233bitr4d 314 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
2524biimpa 480 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
2611, 25resqrtcld 14946 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
2726renegcld 11224 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
28 iccmbl 24417 . . . . . . . . . 10 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
2927, 26, 28syl2anc 587 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
30 mblvol 24381 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3129, 30syl 17 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
3211, 25sqrtge0d 14949 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
3326, 26, 32, 32addge0d 11373 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
34 recn 10784 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
3534sqcld 13679 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
36353ad2ant1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
3715sqcld 13679 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
38373ad2ant3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
3936, 38subcld 11154 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
4039sqrtcld 14966 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4140adantr 484 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
4241, 41subnegd 11161 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
4342breq2d 5051 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
4426, 27subge0d 11387 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4543, 44bitr3d 284 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
4633, 45mpbid 235 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
47 ovolicc 24374 . . . . . . . . . . . 12 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4827, 26, 46, 47syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
4931, 48eqtrd 2771 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
5026, 27resubcld 11225 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈ ℝ)
5149, 50eqeltrd 2831 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)
52 volf 24380 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
53 ffn 6523 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
54 elpreima 6856 . . . . . . . . . 10 (vol Fn dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ)))
5552, 53, 54mp2b 10 . . . . . . . . 9 ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ) ↔ ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈ ℝ))
5629, 51, 55sylanbrc 586 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (vol “ ℝ))
57 0mbl 24390 . . . . . . . . . 10 ∅ ∈ dom vol
58 mblvol 24381 . . . . . . . . . . . . 13 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
5957, 58ax-mp 5 . . . . . . . . . . . 12 (vol‘∅) = (vol*‘∅)
60 ovol0 24344 . . . . . . . . . . . 12 (vol*‘∅) = 0
6159, 60eqtri 2759 . . . . . . . . . . 11 (vol‘∅) = 0
62 0re 10800 . . . . . . . . . . 11 0 ∈ ℝ
6361, 62eqeltri 2827 . . . . . . . . . 10 (vol‘∅) ∈ ℝ
64 elpreima 6856 . . . . . . . . . . 11 (vol Fn dom vol → (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ)))
6552, 53, 64mp2b 10 . . . . . . . . . 10 (∅ ∈ (vol “ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅) ∈ ℝ))
6657, 63, 65mpbir2an 711 . . . . . . . . 9 ∅ ∈ (vol “ ℝ)
6766a1i 11 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (vol “ ℝ))
6856, 67ifclda 4460 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈ (vol “ ℝ))
695, 68eqeltrd 2831 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
70693expa 1120 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
7170ralrimiva 3095 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ))
725fveq2d 6699 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
73723expa 1120 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
7473mpteq2dva 5135 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) = (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))))
75 renegcl 11106 . . . . . . . 8 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
7675adantr 484 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → -𝑅 ∈ ℝ)
77 simpl 486 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑅 ∈ ℝ)
78 iccssre 12982 . . . . . . 7 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
7976, 77, 78syl2anc 587 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅[,]𝑅) ⊆ ℝ)
80 rembl 24391 . . . . . . 7 ℝ ∈ dom vol
8180a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ℝ ∈ dom vol)
82 fvexd 6710 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈ V)
83 eldif 3863 . . . . . . . . 9 (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)))
84 3anass 1097 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅)))
8584a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
86753ad2ant1 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → -𝑅 ∈ ℝ)
87 elicc2 12965 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
8886, 18, 87syl2anc 587 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
89 simp3 1140 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
9089, 18absled 14959 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
9189biantrurd 536 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9290, 91bitrd 282 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅𝑡𝑡𝑅))))
9385, 88, 923bitr4rd 315 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9493biimpd 232 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)))
9594con3d 155 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))
96953expia 1123 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)))
9796impd 414 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9883, 97syl5bi 245 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅))
9998imp 410 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅)
100 iffalse 4434 . . . . . . . . 9 (¬ (abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
101100fveq2d 6699 . . . . . . . 8 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘∅))
102101, 61eqtrdi 2787 . . . . . . 7 (¬ (abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10399, 102syl 17 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
10476, 77, 87syl2anc 587 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
10590biimprd 251 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
106105expd 419 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅)))
1071063expia 1123 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → (abs‘𝑡) ≤ 𝑅))))
1081073impd 1350 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → (abs‘𝑡) ≤ 𝑅))
109104, 108sylbid 243 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅))
1101093impia 1119 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅)
111 iftrue 4431 . . . . . . . . . . . 12 ((abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
112111fveq2d 6699 . . . . . . . . . . 11 ((abs‘𝑡) ≤ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
113110, 112syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
11463ad2ant1 1135 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
11575, 78mpancom 688 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
116115sselda 3887 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
1171163adant2 1133 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
118117resqcld 13782 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
119114, 118resubcld 11225 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
12075, 87mpancom 688 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
121120adantr 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
12222, 90, 143bitr3rd 313 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅𝑡𝑡𝑅)))
12323, 122bitrd 282 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
124123biimprd 251 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
125124expd 419 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))
1261253expia 1123 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
1271263impd 1350 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
128121, 127sylbid 243 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
1291283impia 1119 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
130119, 129resqrtcld 14946 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
131130renegcld 11224 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
132131, 130, 28syl2anc 587 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
133132, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
134119recnd 10826 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
135134sqrtcld 14966 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
136135, 135subnegd 11161 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
137119, 129sqrtge0d 14949 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
138130, 130, 137, 137addge0d 11373 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
139136breq2d 5051 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
140130, 131subge0d 11387 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
141139, 140bitr3d 284 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
142138, 141mpbid 235 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
143131, 130, 142, 47syl3anc 1373 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
1441352timesd 12038 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
145136, 143, 1443eqtr4d 2781 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
146113, 133, 1453eqtrd 2775 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
1471463expa 1120 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
148147mpteq2dva 5135 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))))
149 areacirclem3 35553 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ 𝐿1)
150148, 149eqeltrd 2831 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15179, 81, 82, 103, 150iblss2 24657 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈ 𝐿1)
15274, 151eqeltrd 2831 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1)
153 dmarea 25794 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑡}))) ∈ 𝐿1))
1544, 71, 152, 153syl3anbrc 1345 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 𝑆 ∈ dom area)
155 areaval 25801 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
156154, 155syl 17 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
157 elioore 12930 . . . . . 6 (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ)
15853expa 1120 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
159157, 158sylan2 596 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
160159fveq2d 6699 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
161160itgeq2dv 24633 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
162 ioossre 12961 . . . . 5 (-𝑅(,)𝑅) ⊆ ℝ
163162a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ ℝ)
164 eldif 3863 . . . . . 6 (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)))
16575rexrd 10848 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ*)
166 rexr 10844 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
167 elioo2 12941 . . . . . . . . . . . . . 14 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
168165, 166, 167syl2anc 587 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
1691683ad2ant1 1135 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
17089biantrurd 536 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
17189, 18absltd 14958 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
172 3anass 1097 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅)))
173172a1i 11 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡𝑡 < 𝑅))))
174170, 171, 1733bitr4rd 315 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅))
175169, 174bitrd 282 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅))
176175notbid 321 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅))
17718, 17lenltd 10943 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅))
178176, 177bitr4d 285 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡)))
1795adantr 484 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
180179fveq2d 6699 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)))
18117anim1i 618 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅))
182 eqle 10899 . . . . . . . . . . . . . . . 16 (((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅)
183181, 182, 1123syl 18 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
184 oveq1 7198 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑡) = 𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2))
185184adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2))
18613adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2))
187185, 186eqtr3d 2773 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2))
188 fvoveq1 7214 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑡↑2) − (𝑡↑2))))
189188negeqd 11037 . . . . . . . . . . . . . . . . . . . 20 ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) = -(√‘((𝑡↑2) − (𝑡↑2))))
190189, 188oveq12d 7209 . . . . . . . . . . . . . . . . . . 19 ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))))
1918recnd 10826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℂ)
192191subidd 11142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0)
193192fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = (√‘0))
194193negeqd 11037 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = -(√‘0))
195 sqrt0 14770 . . . . . . . . . . . . . . . . . . . . . . . 24 (√‘0) = 0
196195negeqi 11036 . . . . . . . . . . . . . . . . . . . . . . 23 -(√‘0) = -0
197 neg0 11089 . . . . . . . . . . . . . . . . . . . . . . 23 -0 = 0
198196, 197eqtri 2759 . . . . . . . . . . . . . . . . . . . . . 22 -(√‘0) = 0
199194, 198eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → -(√‘((𝑡↑2) − (𝑡↑2))) = 0)
200193, 195eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → (√‘((𝑡↑2) − (𝑡↑2))) = 0)
201199, 200oveq12d 7209 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ℝ → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
2022013ad2ant3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) = (0[,]0))
203190, 202sylan9eqr 2793 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = (0[,]0))
204203fveq2d 6699 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol‘(0[,]0)))
205 iccmbl 24417 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom vol)
20662, 62, 205mp2an 692 . . . . . . . . . . . . . . . . . . 19 (0[,]0) ∈ dom vol
207 mblvol 24381 . . . . . . . . . . . . . . . . . . 19 ((0[,]0) ∈ dom vol → (vol‘(0[,]0)) = (vol*‘(0[,]0)))
208206, 207ax-mp 5 . . . . . . . . . . . . . . . . . 18 (vol‘(0[,]0)) = (vol*‘(0[,]0))
209 0xr 10845 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
210 iccid 12945 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℝ* → (0[,]0) = {0})
211210fveq2d 6699 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ* → (vol*‘(0[,]0)) = (vol*‘{0}))
212209, 211ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘(0[,]0)) = (vol*‘{0})
213 ovolsn 24346 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℝ → (vol*‘{0}) = 0)
21462, 213ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (vol*‘{0}) = 0
215212, 214eqtri 2759 . . . . . . . . . . . . . . . . . 18 (vol*‘(0[,]0)) = 0
216208, 215eqtri 2759 . . . . . . . . . . . . . . . . 17 (vol‘(0[,]0)) = 0
217204, 216eqtrdi 2787 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
218187, 217syldan 594 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = 0)
219183, 218eqtrd 2771 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
220219ex 416 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
221220adantr 484 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
22218, 17ltnled 10944 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
223222adantr 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
224 simpl1 1193 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ)
22517adantr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ)
226 simpr 488 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡))
227224, 225, 226leltned 10950 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅))
228223, 227bitr3d 284 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅))
229228, 102syl6bir 257 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0))
230221, 229pm2.61dne 3018 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = 0)
231180, 230eqtrd 2771 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0)
232231ex 416 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0))
233178, 232sylbid 243 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))
2342333expia 1123 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)))
235234impd 414 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
236164, 235syl5bi 245 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0))
237236imp 410 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0)
238163, 237itgss 24663 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡)
239 negeq 11035 . . . . . . . . . 10 (𝑅 = 0 → -𝑅 = -0)
240239, 197eqtrdi 2787 . . . . . . . . 9 (𝑅 = 0 → -𝑅 = 0)
241 id 22 . . . . . . . . 9 (𝑅 = 0 → 𝑅 = 0)
242240, 241oveq12d 7209 . . . . . . . 8 (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0))
243 iooid 12928 . . . . . . . 8 (0(,)0) = ∅
244242, 243eqtrdi 2787 . . . . . . 7 (𝑅 = 0 → (-𝑅(,)𝑅) = ∅)
245244adantl 485 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅)
246 itgeq1 24624 . . . . . 6 ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
247245, 246syl 17 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡)
248 itg0 24631 . . . . . 6 ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0
249 sq0 13726 . . . . . . . . . 10 (0↑2) = 0
250249oveq2i 7202 . . . . . . . . 9 (π · (0↑2)) = (π · 0)
251 picn 25303 . . . . . . . . . 10 π ∈ ℂ
252251mul01i 10987 . . . . . . . . 9 (π · 0) = 0
253250, 252eqtr2i 2760 . . . . . . . 8 0 = (π · (0↑2))
254 oveq1 7198 . . . . . . . . 9 (𝑅 = 0 → (𝑅↑2) = (0↑2))
255254oveq2d 7207 . . . . . . . 8 (𝑅 = 0 → (π · (𝑅↑2)) = (π · (0↑2)))
256253, 255eqtr4id 2790 . . . . . . 7 (𝑅 = 0 → 0 = (π · (𝑅↑2)))
257256adantl 485 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2)))
258248, 257syl5eq 2783 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
259247, 258eqtrd 2771 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
260 simp1 1138 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ)
261 0red 10801 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ∈ ℝ)
262 simpr 488 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → 0 ≤ 𝑅)
263261, 77, 262leltned 10950 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0 < 𝑅𝑅 ≠ 0))
264263biimp3ar 1472 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 0 < 𝑅)
265260, 264elrpd 12590 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
2662653expa 1120 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ+)
267157, 16syl 17 . . . . . . . . . . 11 (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ)
268267adantl 485 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ)
269 rpre 12559 . . . . . . . . . . 11 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
270269adantr 484 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ)
271269renegcld 11224 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
272271rexrd 10848 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ*)
273 rpxr 12560 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
274272, 273, 167syl2anc 587 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅)))
275 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
276269adantr 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
277275, 276absltd 14958 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
278277biimprd 251 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
279278exp4b 434 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅))))
2802793impd 1350 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → (abs‘𝑡) < 𝑅))
281274, 280sylbid 243 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅))
282281imp 410 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅)
283268, 270, 282ltled 10945 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅)
284283, 112syl 17 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
285269resqcld 13782 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
286285recnd 10826 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
287286adantr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ)
288191adantl 485 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ)
289287, 288subcld 11154 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
290289sqrtcld 14966 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
291290, 290subnegd 11161 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
292157, 291sylan2 596 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
293285adantr 484 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
2948adantl 485 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
295293, 294resubcld 11225 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
296157, 295sylan2 596 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
297 0red 10801 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ)
29816adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
29919adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
300 rpge0 12564 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
301300adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
302298, 276, 299, 301lt2sqd 13790 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2)))
30312adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
304303breq1d 5049 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2)))
305302, 277, 3043bitr3rd 313 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ (-𝑅 < 𝑡𝑡 < 𝑅)))
306294, 293posdifd 11384 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) < (𝑅↑2) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
307305, 306bitr3d 284 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2))))
308307biimpd 232 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
309308exp4b 434 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2))))))
3103093impd 1350 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
311274, 310sylbid 243 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2))))
312311imp 410 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2)))
313297, 296, 312ltled 10945 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
314296, 313resqrtcld 14946 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
315314renegcld 11224 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
316315, 314, 28syl2anc 587 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol)
317316, 30syl 17 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
318296, 313sqrtge0d 14949 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
319314, 314, 318, 318addge0d 11373 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
320292breq2d 5051 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))))
321314, 315subge0d 11387 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
322320, 321bitr3d 284 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))) ↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
323319, 322mpbid 235 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))
324315, 314, 323, 47syl3anc 1373 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
325317, 324eqtrd 2771 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))))
326 ax-resscn 10751 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
327326a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ℝ ⊆ ℂ)
328271, 269, 78syl2anc 587 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
329 rpcn 12561 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
330329sqcld 13679 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
331330adantr 484 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
332328sselda 3887 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ)
333332recnd 10826 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ)
334329adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
335 rpne0 12567 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+𝑅 ≠ 0)
336335adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
337333, 334, 336divcld 11573 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ)
338 asincl 25710 . . . . . . . . . . . . . . . . 17 ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
339337, 338syl 17 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ)
340 1cnd 10793 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
341337sqcld 13679 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ)
342340, 341subcld 11154 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ)
343342sqrtcld 14966 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ)
344337, 343mulcld 10818 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈ ℂ)
345339, 344addcld 10817 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈ ℂ)
346331, 345mulcld 10818 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈ ℂ)
347 eqid 2736 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
348347tgioo2 23654 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
349 iccntr 23672 . . . . . . . . . . . . . . 15 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
350271, 269, 349syl2anc 587 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅))
351327, 328, 346, 348, 347, 350dvmptntr 24822 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))))
352 areacirclem1 35551 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
353351, 352eqtrd 2771 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
354353adantr 484 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))))
355 oveq1 7198 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2))
356355oveq2d 7207 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2)))
357356fveq2d 6699 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
358357oveq2d 7207 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
359358adantl 485 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
360 simpr 488 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅))
361 ovexd 7226 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈ V)
362354, 359, 360, 361fvmptd 6803 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2)))))
363157, 290sylan2 596 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
3643632timesd 12038 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
365362, 364eqtrd 2771 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))
366292, 325, 3653eqtr4rd 2782 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))))
367284, 366eqtr4d 2774 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡))
368367itgeq2dv 24633 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡)
369269, 269, 300, 300addge0d 11373 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅 + 𝑅))
370329, 329subnegd 11161 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑅 − -𝑅) = (𝑅 + 𝑅))
371370breq2d 5051 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ 0 ≤ (𝑅 + 𝑅)))
372269, 271subge0d 11387 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 − -𝑅) ↔ -𝑅𝑅))
373371, 372bitr3d 284 . . . . . . . 8 (𝑅 ∈ ℝ+ → (0 ≤ (𝑅 + 𝑅) ↔ -𝑅𝑅))
374369, 373mpbid 235 . . . . . . 7 (𝑅 ∈ ℝ+ → -𝑅𝑅)
375 2cn 11870 . . . . . . . . . . 11 2 ∈ ℂ
376162, 326sstri 3896 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ ℂ
377 ssid 3909 . . . . . . . . . . 11 ℂ ⊆ ℂ
378375, 376, 3773pm3.2i 1341 . . . . . . . . . 10 (2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ)
379 cncfmptc 23763 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
380378, 379mp1i 13 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
381 ioossicc 12986 . . . . . . . . . . 11 (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)
382 resmpt 5890 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))))
383381, 382ax-mp 5 . . . . . . . . . 10 ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))
384 areacirclem2 35552 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
385269, 300, 384syl2anc 587 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
386 rescncf 23748 . . . . . . . . . . 11 ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)))
387381, 385, 386mpsyl 68 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
388383, 387eqeltrrid 2836 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
389380, 388mulcncf 24297 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
390353, 389eqeltrd 2831 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ))
391381a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅))
392 ioombl 24416 . . . . . . . . . . 11 (-𝑅(,)𝑅) ∈ dom vol
393392a1i 11 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (-𝑅(,)𝑅) ∈ dom vol)
394 ovexd 7226 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈ V)
395 areacirclem3 35553 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
396391, 393, 394, 395iblss 24656 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
397269, 300, 396syl2anc 587 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ 𝐿1)
398353, 397eqeltrd 2831 . . . . . . 7 (𝑅 ∈ ℝ+ → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ 𝐿1)
399 areacirclem4 35554 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
400271, 269, 374, 390, 398, 399ftc2nc 35545 . . . . . 6 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)))
401 eqidd 2737 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))
402 fvoveq1 7214 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅)))
403 oveq1 7198 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅))
404403oveq1d 7206 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2))
405404oveq2d 7207 . . . . . . . . . . . . . . 15 (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2)))
406405fveq2d 6699 . . . . . . . . . . . . . 14 (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((𝑅 / 𝑅)↑2))))
407403, 406oveq12d 7209 . . . . . . . . . . . . 13 (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))
408402, 407oveq12d 7209 . . . . . . . . . . . 12 (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))
409408oveq2d 7207 . . . . . . . . . . 11 (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
410409adantl 485 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
411 ubicc2 13018 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → 𝑅 ∈ (-𝑅[,]𝑅))
412272, 273, 374, 411syl3anc 1373 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ (-𝑅[,]𝑅))
413 ovexd 7226 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V)
414401, 410, 412, 413fvmptd 6803 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))))
415329, 335dividd 11571 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) = 1)
416415fveq2d 6699 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (arcsin‘1))
417 asin1 25731 . . . . . . . . . . . . 13 (arcsin‘1) = (π / 2)
418416, 417eqtrdi 2787 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(𝑅 / 𝑅)) = (π / 2))
419415oveq1d 7206 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = (1↑2))
420 sq1 13729 . . . . . . . . . . . . . . . . . . 19 (1↑2) = 1
421419, 420eqtrdi 2787 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅)↑2) = 1)
422421oveq2d 7207 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = (1 − 1))
423 1cnd 10793 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 1 ∈ ℂ)
424423subidd 11142 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − 1) = 0)
425422, 424eqtrd 2771 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((𝑅 / 𝑅)↑2)) = 0)
426425fveq2d 6699 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = (√‘0))
427426, 195eqtrdi 2787 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0)
428427oveq2d 7207 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0))
429329, 329, 335divcld 11573 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅 / 𝑅) ∈ ℂ)
430429mul01d 10996 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · 0) = 0)
431428, 430eqtrd 2771 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))) = 0)
432418, 431oveq12d 7209 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) + 0))
433 2ne0 11899 . . . . . . . . . . . . . 14 2 ≠ 0
434251, 375, 433divcli 11539 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
435434a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (π / 2) ∈ ℂ)
436435addid1d 10997 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((π / 2) + 0) = (π / 2))
437432, 436eqtrd 2771 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2))
438437oveq2d 7207 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π / 2)))
439414, 438eqtrd 2771 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π / 2)))
440 fvoveq1 7214 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅)))
441 oveq1 7198 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅))
442441oveq1d 7206 . . . . . . . . . . . . . . . 16 (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2))
443442oveq2d 7207 . . . . . . . . . . . . . . 15 (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2)))
444443fveq2d 6699 . . . . . . . . . . . . . 14 (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 − ((-𝑅 / 𝑅)↑2))))
445441, 444oveq12d 7209 . . . . . . . . . . . . 13 (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))
446440, 445oveq12d 7209 . . . . . . . . . . . 12 (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
447446adantl 485 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))))
448447oveq2d 7207 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
449 lbicc2 13017 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ -𝑅𝑅) → -𝑅 ∈ (-𝑅[,]𝑅))
450272, 273, 374, 449syl3anc 1373 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → -𝑅 ∈ (-𝑅[,]𝑅))
451 ovexd 7226 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) ∈ V)
452401, 448, 450, 451fvmptd 6803 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))))
453329, 329, 335divnegd 11586 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = (-𝑅 / 𝑅))
454415negeqd 11037 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -(𝑅 / 𝑅) = -1)
455453, 454eqtr3d 2773 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) = -1)
456455fveq2d 6699 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = (arcsin‘-1))
457 ax-1cn 10752 . . . . . . . . . . . . . . 15 1 ∈ ℂ
458 asinneg 25723 . . . . . . . . . . . . . . 15 (1 ∈ ℂ → (arcsin‘-1) = -(arcsin‘1))
459457, 458ax-mp 5 . . . . . . . . . . . . . 14 (arcsin‘-1) = -(arcsin‘1)
460417negeqi 11036 . . . . . . . . . . . . . 14 -(arcsin‘1) = -(π / 2)
461459, 460eqtri 2759 . . . . . . . . . . . . 13 (arcsin‘-1) = -(π / 2)
462456, 461eqtrdi 2787 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (arcsin‘(-𝑅 / 𝑅)) = -(π / 2))
463455oveq1d 7206 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = (-1↑2))
464 neg1sqe1 13730 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
465463, 464eqtrdi 2787 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅)↑2) = 1)
466465oveq2d 7207 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = (1 − 1))
467466, 424eqtrd 2771 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 − ((-𝑅 / 𝑅)↑2)) = 0)
468467fveq2d 6699 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = (√‘0))
469468, 195eqtrdi 2787 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0)
470469oveq2d 7207 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0))
471271recnd 10826 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℂ)
472471, 329, 335divcld 11573 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (-𝑅 / 𝑅) ∈ ℂ)
473472mul01d 10996 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · 0) = 0)
474470, 473eqtrd 2771 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))) = 0)
475462, 474oveq12d 7209 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = (-(π / 2) + 0))
476434negcli 11111 . . . . . . . . . . . . 13 -(π / 2) ∈ ℂ
477476a1i 11 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → -(π / 2) ∈ ℂ)
478477addid1d 10997 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (-(π / 2) + 0) = -(π / 2))
479475, 478eqtrd 2771 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2))))) = -(π / 2))
480479oveq2d 7207 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 − ((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π / 2)))
481452, 480eqtrd 2771 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π / 2)))
482439, 481oveq12d 7209 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
483434, 434subnegi 11122 . . . . . . . . . . 11 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
484 pidiv2halves 25311 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
485483, 484eqtri 2759 . . . . . . . . . 10 ((π / 2) − -(π / 2)) = π
486485a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((π / 2) − -(π / 2)) = π)
487486oveq2d 7207 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = ((𝑅↑2) · π))
488330, 435, 477subdid 11253 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · ((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))))
489251a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ+ → π ∈ ℂ)
490330, 489mulcomd 10819 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((𝑅↑2) · π) = (π · (𝑅↑2)))
491487, 488, 4903eqtr3d 2779 . . . . . . 7 (𝑅 ∈ ℝ+ → (((𝑅↑2) · (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π · (𝑅↑2)))
492482, 491eqtrd 2771 . . . . . 6 (𝑅 ∈ ℝ+ → (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2)))
493368, 400, 4923eqtrd 2775 . . . . 5 (𝑅 ∈ ℝ+ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
494266, 493syl 17 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
495259, 494pm2.61dane 3019 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2)))
496161, 238, 4953eqtr3d 2779 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡 = (π · (𝑅↑2)))
497156, 496eqtrd 2771 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (area‘𝑆) = (π · (𝑅↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  Vcvv 3398  cdif 3850  wss 3853  c0 4223  ifcif 4425  {csn 4527   class class class wbr 5039  {copab 5101  cmpt 5120   × cxp 5534  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  cima 5539   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  +∞cpnf 10829  *cxr 10831   < clt 10832  cle 10833  cmin 11027  -cneg 11028   / cdiv 11454  2c2 11850  +crp 12551  (,)cioo 12900  [,]cicc 12903  cexp 13600  csqrt 14761  abscabs 14762  πcpi 15591  TopOpenctopn 16880  topGenctg 16896  fldccnfld 20317  intcnt 21868  cnccncf 23727  vol*covol 24313  volcvol 24314  𝐿1cibl 24468  citg 24469   D cdv 24714  arcsincasin 25699  areacarea 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-symdif 4143  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-ofr 7448  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-acn 9523  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-sin 15594  df-cos 15595  df-tan 15596  df-pi 15597  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-cmp 22238  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-ovol 24315  df-vol 24316  df-mbf 24470  df-itg1 24471  df-itg2 24472  df-ibl 24473  df-itg 24474  df-0p 24521  df-limc 24717  df-dv 24718  df-log 25399  df-cxp 25400  df-asin 25702  df-area 25793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator