Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1modmmod Structured version   Visualization version   GIF version

Theorem m1modmmod 42844
Description: An integer decreased by 1 modulo a positive integer minus the integer modulo the same modulus is either -1 or the modulus minus 1. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
m1modmmod ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))

Proof of Theorem m1modmmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6801 . . . . 5 ((𝐴 mod 𝑁) = 0 → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((𝐴 − 1) mod 𝑁) − 0))
21adantl 467 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((𝐴 − 1) mod 𝑁) − 0))
3 peano2zm 11622 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
43zred 11684 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
54adantr 466 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
6 nnrp 12045 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
76adantl 467 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ+)
85, 7modcld 12882 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
98recnd 10270 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod 𝑁) ∈ ℂ)
109subid1d 10583 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − 0) = ((𝐴 − 1) mod 𝑁))
1110adantr 466 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) − 0) = ((𝐴 − 1) mod 𝑁))
12 mod0mul 42842 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁)))
1312imp 393 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))
14 oveq1 6800 . . . . . . . . . 10 (𝐴 = (𝑥 · 𝑁) → (𝐴 − 1) = ((𝑥 · 𝑁) − 1))
1514oveq1d 6808 . . . . . . . . 9 (𝐴 = (𝑥 · 𝑁) → ((𝐴 − 1) mod 𝑁) = (((𝑥 · 𝑁) − 1) mod 𝑁))
16 zcn 11584 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
17 nncn 11230 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1817adantl 467 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
19 mulcl 10222 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑥 · 𝑁) ∈ ℂ)
2016, 18, 19syl2anr 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑁) ∈ ℂ)
2118adantr 466 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
2220, 21npcand 10598 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 𝑁) + 𝑁) = (𝑥 · 𝑁))
2322eqcomd 2777 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑁) = (((𝑥 · 𝑁) − 𝑁) + 𝑁))
2416adantl 467 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
2524, 21mulsubfacd 10694 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) − 𝑁) = ((𝑥 − 1) · 𝑁))
2625oveq1d 6808 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 𝑁) + 𝑁) = (((𝑥 − 1) · 𝑁) + 𝑁))
2723, 26eqtrd 2805 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑁) = (((𝑥 − 1) · 𝑁) + 𝑁))
2827oveq1d 6808 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) − 1) = ((((𝑥 − 1) · 𝑁) + 𝑁) − 1))
29 peano2zm 11622 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℤ)
3029zcnd 11685 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℂ)
31 mulcl 10222 . . . . . . . . . . . . . 14 (((𝑥 − 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑥 − 1) · 𝑁) ∈ ℂ)
3230, 18, 31syl2anr 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 − 1) · 𝑁) ∈ ℂ)
33 1cnd 10258 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 1 ∈ ℂ)
3432, 21, 33addsubassd 10614 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((((𝑥 − 1) · 𝑁) + 𝑁) − 1) = (((𝑥 − 1) · 𝑁) + (𝑁 − 1)))
3528, 34eqtrd 2805 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) − 1) = (((𝑥 − 1) · 𝑁) + (𝑁 − 1)))
3635oveq1d 6808 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 1) mod 𝑁) = ((((𝑥 − 1) · 𝑁) + (𝑁 − 1)) mod 𝑁))
37 nnre 11229 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
38 peano2rem 10550 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
4039recnd 10270 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4140adantl 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
4241adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑁 − 1) ∈ ℂ)
4332, 42addcomd 10440 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 − 1) · 𝑁) + (𝑁 − 1)) = ((𝑁 − 1) + ((𝑥 − 1) · 𝑁)))
4443oveq1d 6808 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((((𝑥 − 1) · 𝑁) + (𝑁 − 1)) mod 𝑁) = (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁))
4539adantl 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
4645adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑁 − 1) ∈ ℝ)
477adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ+)
4829adantl 467 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 1) ∈ ℤ)
49 modcyc 12913 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ (𝑥 − 1) ∈ ℤ) → (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁) = ((𝑁 − 1) mod 𝑁))
5046, 47, 48, 49syl3anc 1476 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁) = ((𝑁 − 1) mod 𝑁))
5139, 6jca 501 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5251adantl 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5352adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
54 nnm1ge0 11647 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
5554adantl 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑁 − 1))
5655adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 0 ≤ (𝑁 − 1))
5737ltm1d 11158 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
5857adantl 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
5958adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑁 − 1) < 𝑁)
60 modid 12903 . . . . . . . . . . . 12 ((((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁)) → ((𝑁 − 1) mod 𝑁) = (𝑁 − 1))
6153, 56, 59, 60syl12anc 1474 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑁 − 1) mod 𝑁) = (𝑁 − 1))
6250, 61eqtrd 2805 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁) = (𝑁 − 1))
6336, 44, 623eqtrd 2809 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 1) mod 𝑁) = (𝑁 − 1))
6415, 63sylan9eqr 2827 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝐴 = (𝑥 · 𝑁)) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1))
6564ex 397 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝐴 = (𝑥 · 𝑁) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1)))
6665rexlimdva 3179 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1)))
6766adantr 466 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1)))
6813, 67mpd 15 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1))
692, 11, 683eqtrrd 2810 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝑁 − 1) = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
70 df-ne 2944 . . . . 5 ((𝐴 mod 𝑁) ≠ 0 ↔ ¬ (𝐴 mod 𝑁) = 0)
71 modn0mul 42843 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
72 oveq1 6800 . . . . . . . . . . . . 13 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → (𝐴 − 1) = (((𝑥 · 𝑁) + 𝑦) − 1))
7372oveq1d 6808 . . . . . . . . . . . 12 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → ((𝐴 − 1) mod 𝑁) = ((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁))
74 oveq1 6800 . . . . . . . . . . . 12 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → (𝐴 mod 𝑁) = (((𝑥 · 𝑁) + 𝑦) mod 𝑁))
7573, 74oveq12d 6811 . . . . . . . . . . 11 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) − (((𝑥 · 𝑁) + 𝑦) mod 𝑁)))
7616adantr 466 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 𝑥 ∈ ℂ)
7776, 18, 19syl2anr 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑥 · 𝑁) ∈ ℂ)
78 elfzoelz 12678 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℤ)
7978zcnd 11685 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℂ)
8079adantl 467 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ ℂ)
8180adantl 467 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑦 ∈ ℂ)
82 1cnd 10258 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 1 ∈ ℂ)
8377, 81, 82addsubassd 10614 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) − 1) = ((𝑥 · 𝑁) + (𝑦 − 1)))
84 peano2zm 11622 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℤ → (𝑦 − 1) ∈ ℤ)
8578, 84syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → (𝑦 − 1) ∈ ℤ)
8685zcnd 11685 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → (𝑦 − 1) ∈ ℂ)
8786adantl 467 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → (𝑦 − 1) ∈ ℂ)
8887adantl 467 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 − 1) ∈ ℂ)
8977, 88addcomd 10440 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑥 · 𝑁) + (𝑦 − 1)) = ((𝑦 − 1) + (𝑥 · 𝑁)))
9083, 89eqtrd 2805 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) − 1) = ((𝑦 − 1) + (𝑥 · 𝑁)))
9190oveq1d 6808 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) = (((𝑦 − 1) + (𝑥 · 𝑁)) mod 𝑁))
9285zred 11684 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → (𝑦 − 1) ∈ ℝ)
9392adantl 467 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → (𝑦 − 1) ∈ ℝ)
9493adantl 467 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 − 1) ∈ ℝ)
957adantr 466 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑁 ∈ ℝ+)
96 simprl 754 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑥 ∈ ℤ)
97 modcyc 12913 . . . . . . . . . . . . . 14 (((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+𝑥 ∈ ℤ) → (((𝑦 − 1) + (𝑥 · 𝑁)) mod 𝑁) = ((𝑦 − 1) mod 𝑁))
9894, 95, 96, 97syl3anc 1476 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑦 − 1) + (𝑥 · 𝑁)) mod 𝑁) = ((𝑦 − 1) mod 𝑁))
9991, 98eqtrd 2805 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) = ((𝑦 − 1) mod 𝑁))
10077, 81addcomd 10440 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑥 · 𝑁) + 𝑦) = (𝑦 + (𝑥 · 𝑁)))
101100oveq1d 6808 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) mod 𝑁) = ((𝑦 + (𝑥 · 𝑁)) mod 𝑁))
10278zred 11684 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℝ)
103102adantl 467 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ ℝ)
104103adantl 467 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑦 ∈ ℝ)
105 modcyc 12913 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+𝑥 ∈ ℤ) → ((𝑦 + (𝑥 · 𝑁)) mod 𝑁) = (𝑦 mod 𝑁))
106104, 95, 96, 105syl3anc 1476 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 + (𝑥 · 𝑁)) mod 𝑁) = (𝑦 mod 𝑁))
1077, 103anim12ci 601 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
108 elfzole1 12686 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → 1 ≤ 𝑦)
109 0lt1 10752 . . . . . . . . . . . . . . . . . . . 20 0 < 1
110 0red 10243 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (1..^𝑁) → 0 ∈ ℝ)
111 1red 10257 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (1..^𝑁) → 1 ∈ ℝ)
112 ltleletr 10332 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑦) → 0 ≤ 𝑦))
113110, 111, 102, 112syl3anc 1476 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1..^𝑁) → ((0 < 1 ∧ 1 ≤ 𝑦) → 0 ≤ 𝑦))
114109, 113mpani 676 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → (1 ≤ 𝑦 → 0 ≤ 𝑦))
115108, 114mpd 15 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → 0 ≤ 𝑦)
116 elfzolt2 12687 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → 𝑦 < 𝑁)
117115, 116jca 501 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) → (0 ≤ 𝑦𝑦 < 𝑁))
118117adantl 467 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → (0 ≤ 𝑦𝑦 < 𝑁))
119118adantl 467 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (0 ≤ 𝑦𝑦 < 𝑁))
120107, 119jca 501 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)))
121 modid 12903 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦)
122120, 121syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 mod 𝑁) = 𝑦)
123101, 106, 1223eqtrd 2809 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) mod 𝑁) = 𝑦)
12499, 123oveq12d 6811 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) − (((𝑥 · 𝑁) + 𝑦) mod 𝑁)) = (((𝑦 − 1) mod 𝑁) − 𝑦))
12575, 124sylan9eqr 2827 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((𝑦 − 1) mod 𝑁) − 𝑦))
1267, 93anim12ci 601 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
127 elfzo2 12681 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) ↔ (𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁))
128 eluz2 11894 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ≤ 𝑦))
129 zre 11583 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
130 zre 11583 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℤ → 1 ∈ ℝ)
131 subge0 10743 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑦 − 1) ↔ 1 ≤ 𝑦))
132129, 130, 131syl2anr 584 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (0 ≤ (𝑦 − 1) ↔ 1 ≤ 𝑦))
133132biimp3ar 1581 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ≤ 𝑦) → 0 ≤ (𝑦 − 1))
134128, 133sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘1) → 0 ≤ (𝑦 − 1))
1351343ad2ant1 1127 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → 0 ≤ (𝑦 − 1))
136127, 135sylbi 207 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → 0 ≤ (𝑦 − 1))
137136adantl 467 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 0 ≤ (𝑦 − 1))
138137adantl 467 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 0 ≤ (𝑦 − 1))
139 eluzelz 11898 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (ℤ‘1) → 𝑦 ∈ ℤ)
140139zred 11684 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (ℤ‘1) → 𝑦 ∈ ℝ)
141 zre 11583 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
142 ltle 10328 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑦 < 𝑁𝑦𝑁))
143140, 141, 142syl2an 583 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁𝑦𝑁))
1441433impia 1109 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → 𝑦𝑁)
145139anim1i 602 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1461453adant3 1126 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → (𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ))
147 zlem1lt 11631 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦𝑁 ↔ (𝑦 − 1) < 𝑁))
148146, 147syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → (𝑦𝑁 ↔ (𝑦 − 1) < 𝑁))
149144, 148mpbid 222 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → (𝑦 − 1) < 𝑁)
150149a1d 25 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 − 1) < 𝑁))
151127, 150sylbi 207 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 − 1) < 𝑁))
152151adantl 467 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 − 1) < 𝑁))
153152impcom 394 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 − 1) < 𝑁)
154 modid 12903 . . . . . . . . . . . . . 14 ((((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑁)) → ((𝑦 − 1) mod 𝑁) = (𝑦 − 1))
155126, 138, 153, 154syl12anc 1474 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) mod 𝑁) = (𝑦 − 1))
156155oveq1d 6808 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑦 − 1) mod 𝑁) − 𝑦) = ((𝑦 − 1) − 𝑦))
157 1cnd 10258 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) → 1 ∈ ℂ)
15879, 157, 79sub32d 10626 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → ((𝑦 − 1) − 𝑦) = ((𝑦𝑦) − 1))
15979subidd 10582 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) → (𝑦𝑦) = 0)
160159oveq1d 6808 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → ((𝑦𝑦) − 1) = (0 − 1))
161158, 160eqtrd 2805 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1..^𝑁) → ((𝑦 − 1) − 𝑦) = (0 − 1))
162161adantl 467 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 − 1) − 𝑦) = (0 − 1))
163162adantl 467 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) − 𝑦) = (0 − 1))
164 df-neg 10471 . . . . . . . . . . . . 13 -1 = (0 − 1)
165163, 164syl6eqr 2823 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) − 𝑦) = -1)
166156, 165eqtrd 2805 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑦 − 1) mod 𝑁) − 𝑦) = -1)
167166adantr 466 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → (((𝑦 − 1) mod 𝑁) − 𝑦) = -1)
168125, 167eqtrd 2805 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = -1)
169168eqcomd 2777 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
170169ex 397 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝐴 = ((𝑥 · 𝑁) + 𝑦) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
171170rexlimdvva 3186 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
17271, 171syld 47 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
17370, 172syl5bir 233 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ (𝐴 mod 𝑁) = 0 → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
174173imp 393 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 mod 𝑁) = 0) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
17569, 174ifeqda 4260 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
176175eqcomd 2777 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  ifcif 4225   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468  -cneg 10469  cn 11222  cz 11579  cuz 11888  +crp 12035  ..^cfzo 12673   mod cmo 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877
This theorem is referenced by:  dignn0flhalflem1  42937
  Copyright terms: Public domain W3C validator