Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1modmmod Structured version   Visualization version   GIF version

Theorem m1modmmod 47359
Description: An integer decreased by 1 modulo a positive integer minus the integer modulo the same modulus is either -1 or the modulus minus 1. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
m1modmmod ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))

Proof of Theorem m1modmmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . 5 ((𝐴 mod 𝑁) = 0 → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((𝐴 − 1) mod 𝑁) − 0))
21adantl 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((𝐴 − 1) mod 𝑁) − 0))
3 peano2zm 12576 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
43zred 12638 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
54adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
6 nnrp 12963 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
76adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ+)
85, 7modcld 13837 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
98recnd 11202 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod 𝑁) ∈ ℂ)
109subid1d 11522 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − 0) = ((𝐴 − 1) mod 𝑁))
1110adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) − 0) = ((𝐴 − 1) mod 𝑁))
12 mod0mul 47357 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁)))
1312imp 406 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))
14 oveq1 7394 . . . . . . . . 9 (𝐴 = (𝑥 · 𝑁) → (𝐴 − 1) = ((𝑥 · 𝑁) − 1))
1514oveq1d 7402 . . . . . . . 8 (𝐴 = (𝑥 · 𝑁) → ((𝐴 − 1) mod 𝑁) = (((𝑥 · 𝑁) − 1) mod 𝑁))
16 zcn 12534 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
17 nncn 12194 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1817adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
19 mulcl 11152 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑥 · 𝑁) ∈ ℂ)
2016, 18, 19syl2anr 597 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑁) ∈ ℂ)
2118adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
2220, 21npcand 11537 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 𝑁) + 𝑁) = (𝑥 · 𝑁))
2322eqcomd 2735 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑁) = (((𝑥 · 𝑁) − 𝑁) + 𝑁))
2416adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
2524, 21mulsubfacd 11639 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) − 𝑁) = ((𝑥 − 1) · 𝑁))
2625oveq1d 7402 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 𝑁) + 𝑁) = (((𝑥 − 1) · 𝑁) + 𝑁))
2723, 26eqtrd 2764 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑁) = (((𝑥 − 1) · 𝑁) + 𝑁))
2827oveq1d 7402 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) − 1) = ((((𝑥 − 1) · 𝑁) + 𝑁) − 1))
29 peano2zm 12576 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℤ)
3029zcnd 12639 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥 − 1) ∈ ℂ)
31 mulcl 11152 . . . . . . . . . . . . 13 (((𝑥 − 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑥 − 1) · 𝑁) ∈ ℂ)
3230, 18, 31syl2anr 597 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 − 1) · 𝑁) ∈ ℂ)
33 1cnd 11169 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 1 ∈ ℂ)
3432, 21, 33addsubassd 11553 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((((𝑥 − 1) · 𝑁) + 𝑁) − 1) = (((𝑥 − 1) · 𝑁) + (𝑁 − 1)))
3528, 34eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) − 1) = (((𝑥 − 1) · 𝑁) + (𝑁 − 1)))
3635oveq1d 7402 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 1) mod 𝑁) = ((((𝑥 − 1) · 𝑁) + (𝑁 − 1)) mod 𝑁))
37 nnre 12193 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
38 peano2rem 11489 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
3937, 38syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
4039recnd 11202 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4140adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
4241adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑁 − 1) ∈ ℂ)
4332, 42addcomd 11376 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 − 1) · 𝑁) + (𝑁 − 1)) = ((𝑁 − 1) + ((𝑥 − 1) · 𝑁)))
4443oveq1d 7402 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((((𝑥 − 1) · 𝑁) + (𝑁 − 1)) mod 𝑁) = (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁))
4539adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
4645adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑁 − 1) ∈ ℝ)
477adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ+)
4829adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 − 1) ∈ ℤ)
49 modcyc 13868 . . . . . . . . . . 11 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ (𝑥 − 1) ∈ ℤ) → (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁) = ((𝑁 − 1) mod 𝑁))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁) = ((𝑁 − 1) mod 𝑁))
5139, 6jca 511 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5251adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5352adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
54 nnm1ge0 12602 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
5554adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑁 − 1))
5655adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → 0 ≤ (𝑁 − 1))
5737ltm1d 12115 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
5857adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
5958adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑁 − 1) < 𝑁)
60 modid 13858 . . . . . . . . . . 11 ((((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁)) → ((𝑁 − 1) mod 𝑁) = (𝑁 − 1))
6153, 56, 59, 60syl12anc 836 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ((𝑁 − 1) mod 𝑁) = (𝑁 − 1))
6250, 61eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑁 − 1) + ((𝑥 − 1) · 𝑁)) mod 𝑁) = (𝑁 − 1))
6336, 44, 623eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝑁) − 1) mod 𝑁) = (𝑁 − 1))
6415, 63sylan9eqr 2786 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝐴 = (𝑥 · 𝑁)) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1))
6564rexlimdva2 3136 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1)))
6665adantr 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1)))
6713, 66mpd 15 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴 − 1) mod 𝑁) = (𝑁 − 1))
682, 11, 673eqtrrd 2769 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝑁 − 1) = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
69 df-ne 2926 . . . . 5 ((𝐴 mod 𝑁) ≠ 0 ↔ ¬ (𝐴 mod 𝑁) = 0)
70 modn0mul 47358 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
71 oveq1 7394 . . . . . . . . . . . . 13 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → (𝐴 − 1) = (((𝑥 · 𝑁) + 𝑦) − 1))
7271oveq1d 7402 . . . . . . . . . . . 12 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → ((𝐴 − 1) mod 𝑁) = ((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁))
73 oveq1 7394 . . . . . . . . . . . 12 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → (𝐴 mod 𝑁) = (((𝑥 · 𝑁) + 𝑦) mod 𝑁))
7472, 73oveq12d 7405 . . . . . . . . . . 11 (𝐴 = ((𝑥 · 𝑁) + 𝑦) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) − (((𝑥 · 𝑁) + 𝑦) mod 𝑁)))
7516adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 𝑥 ∈ ℂ)
7675, 18, 19syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑥 · 𝑁) ∈ ℂ)
77 elfzoelz 13620 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℤ)
7877zcnd 12639 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℂ)
7978adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ ℂ)
8079adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑦 ∈ ℂ)
81 1cnd 11169 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 1 ∈ ℂ)
8276, 80, 81addsubassd 11553 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) − 1) = ((𝑥 · 𝑁) + (𝑦 − 1)))
83 peano2zm 12576 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℤ → (𝑦 − 1) ∈ ℤ)
8477, 83syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → (𝑦 − 1) ∈ ℤ)
8584zcnd 12639 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → (𝑦 − 1) ∈ ℂ)
8685adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → (𝑦 − 1) ∈ ℂ)
8786adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 − 1) ∈ ℂ)
8876, 87addcomd 11376 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑥 · 𝑁) + (𝑦 − 1)) = ((𝑦 − 1) + (𝑥 · 𝑁)))
8982, 88eqtrd 2764 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) − 1) = ((𝑦 − 1) + (𝑥 · 𝑁)))
9089oveq1d 7402 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) = (((𝑦 − 1) + (𝑥 · 𝑁)) mod 𝑁))
9184zred 12638 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → (𝑦 − 1) ∈ ℝ)
9291adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → (𝑦 − 1) ∈ ℝ)
9392adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 − 1) ∈ ℝ)
947adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑁 ∈ ℝ+)
95 simprl 770 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑥 ∈ ℤ)
96 modcyc 13868 . . . . . . . . . . . . . 14 (((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+𝑥 ∈ ℤ) → (((𝑦 − 1) + (𝑥 · 𝑁)) mod 𝑁) = ((𝑦 − 1) mod 𝑁))
9793, 94, 95, 96syl3anc 1373 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑦 − 1) + (𝑥 · 𝑁)) mod 𝑁) = ((𝑦 − 1) mod 𝑁))
9890, 97eqtrd 2764 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) = ((𝑦 − 1) mod 𝑁))
9976, 80addcomd 11376 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑥 · 𝑁) + 𝑦) = (𝑦 + (𝑥 · 𝑁)))
10099oveq1d 7402 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) mod 𝑁) = ((𝑦 + (𝑥 · 𝑁)) mod 𝑁))
10177zred 12638 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℝ)
102101adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ ℝ)
103102adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 𝑦 ∈ ℝ)
104 modcyc 13868 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+𝑥 ∈ ℤ) → ((𝑦 + (𝑥 · 𝑁)) mod 𝑁) = (𝑦 mod 𝑁))
105103, 94, 95, 104syl3anc 1373 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 + (𝑥 · 𝑁)) mod 𝑁) = (𝑦 mod 𝑁))
1067, 102anim12ci 614 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
107 elfzole1 13628 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → 1 ≤ 𝑦)
108 0lt1 11700 . . . . . . . . . . . . . . . . . . . 20 0 < 1
109 0red 11177 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (1..^𝑁) → 0 ∈ ℝ)
110 1red 11175 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (1..^𝑁) → 1 ∈ ℝ)
111 ltleletr 11267 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑦) → 0 ≤ 𝑦))
112109, 110, 101, 111syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1..^𝑁) → ((0 < 1 ∧ 1 ≤ 𝑦) → 0 ≤ 𝑦))
113108, 112mpani 696 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1..^𝑁) → (1 ≤ 𝑦 → 0 ≤ 𝑦))
114107, 113mpd 15 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → 0 ≤ 𝑦)
115 elfzolt2 13629 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1..^𝑁) → 𝑦 < 𝑁)
116114, 115jca 511 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) → (0 ≤ 𝑦𝑦 < 𝑁))
117116adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → (0 ≤ 𝑦𝑦 < 𝑁))
118117adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (0 ≤ 𝑦𝑦 < 𝑁))
119106, 118jca 511 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)))
120 modid 13858 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦)
121119, 120syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 mod 𝑁) = 𝑦)
122100, 105, 1213eqtrd 2768 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑥 · 𝑁) + 𝑦) mod 𝑁) = 𝑦)
12398, 122oveq12d 7405 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((((𝑥 · 𝑁) + 𝑦) − 1) mod 𝑁) − (((𝑥 · 𝑁) + 𝑦) mod 𝑁)) = (((𝑦 − 1) mod 𝑁) − 𝑦))
12474, 123sylan9eqr 2786 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = (((𝑦 − 1) mod 𝑁) − 𝑦))
1257, 92anim12ci 614 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
126 elfzo2 13623 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) ↔ (𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁))
127 eluz2 12799 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ≤ 𝑦))
128 zre 12533 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
129 zre 12533 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℤ → 1 ∈ ℝ)
130 subge0 11691 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑦 − 1) ↔ 1 ≤ 𝑦))
131128, 129, 130syl2anr 597 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (0 ≤ (𝑦 − 1) ↔ 1 ≤ 𝑦))
132131biimp3ar 1472 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ≤ 𝑦) → 0 ≤ (𝑦 − 1))
133127, 132sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘1) → 0 ≤ (𝑦 − 1))
1341333ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → 0 ≤ (𝑦 − 1))
135126, 134sylbi 217 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → 0 ≤ (𝑦 − 1))
136135adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → 0 ≤ (𝑦 − 1))
137136adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → 0 ≤ (𝑦 − 1))
138 eluzelz 12803 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (ℤ‘1) → 𝑦 ∈ ℤ)
139138zred 12638 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (ℤ‘1) → 𝑦 ∈ ℝ)
140 zre 12533 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
141 ltle 11262 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑦 < 𝑁𝑦𝑁))
142139, 140, 141syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (𝑦 < 𝑁𝑦𝑁))
1431423impia 1117 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → 𝑦𝑁)
144138anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1451443adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → (𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ))
146 zlem1lt 12585 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦𝑁 ↔ (𝑦 − 1) < 𝑁))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → (𝑦𝑁 ↔ (𝑦 − 1) < 𝑁))
148143, 147mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → (𝑦 − 1) < 𝑁)
149148a1d 25 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝑦 < 𝑁) → ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 − 1) < 𝑁))
150126, 149sylbi 217 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 − 1) < 𝑁))
151150adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦 − 1) < 𝑁))
152151impcom 407 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝑦 − 1) < 𝑁)
153 modid 13858 . . . . . . . . . . . . . 14 ((((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑁)) → ((𝑦 − 1) mod 𝑁) = (𝑦 − 1))
154125, 137, 152, 153syl12anc 836 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) mod 𝑁) = (𝑦 − 1))
155154oveq1d 7402 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑦 − 1) mod 𝑁) − 𝑦) = ((𝑦 − 1) − 𝑦))
156 1cnd 11169 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) → 1 ∈ ℂ)
15778, 156, 78sub32d 11565 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → ((𝑦 − 1) − 𝑦) = ((𝑦𝑦) − 1))
15878subidd 11521 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1..^𝑁) → (𝑦𝑦) = 0)
159158oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1..^𝑁) → ((𝑦𝑦) − 1) = (0 − 1))
160157, 159eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1..^𝑁) → ((𝑦 − 1) − 𝑦) = (0 − 1))
161160adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 − 1) − 𝑦) = (0 − 1))
162161adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) − 𝑦) = (0 − 1))
163 df-neg 11408 . . . . . . . . . . . . 13 -1 = (0 − 1)
164162, 163eqtr4di 2782 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑦 − 1) − 𝑦) = -1)
165155, 164eqtrd 2764 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (((𝑦 − 1) mod 𝑁) − 𝑦) = -1)
166165adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → (((𝑦 − 1) mod 𝑁) − 𝑦) = -1)
167124, 166eqtrd 2764 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = -1)
168167eqcomd 2735 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) ∧ 𝐴 = ((𝑥 · 𝑁) + 𝑦)) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
169168ex 412 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (1..^𝑁))) → (𝐴 = ((𝑥 · 𝑁) + 𝑦) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
170169rexlimdvva 3194 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
17170, 170syld 47 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
17269, 171biimtrrid 243 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ (𝐴 mod 𝑁) = 0 → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁))))
173172imp 406 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 mod 𝑁) = 0) → -1 = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
17468, 173ifeqda 4525 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1) = (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)))
175174eqcomd 2735 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  cz 12529  cuz 12793  +crp 12951  ..^cfzo 13615   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832
This theorem is referenced by:  difmodm1lt  47360  dignn0flhalflem1  48604
  Copyright terms: Public domain W3C validator