MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfval Structured version   Visualization version   GIF version

Theorem fcfval 23184
Description: The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))

Proof of Theorem fcfval
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fcf 23093 . . . . 5 fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))))
21a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)))))
3 simprl 768 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
43unieqd 4853 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
5 toponuni 22063 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 723 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑋 = 𝐽)
74, 6eqtr4d 2781 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝑋)
8 unieq 4850 . . . . . . . 8 (𝑓 = 𝐿 𝑓 = 𝐿)
98ad2antll 726 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
10 filunibas 23032 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑌) → 𝐿 = 𝑌)
1110ad2antlr 724 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝐿 = 𝑌)
129, 11eqtrd 2778 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝑌)
137, 12oveq12d 7293 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗m 𝑓) = (𝑋m 𝑌))
147oveq1d 7290 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗 FilMap 𝑔) = (𝑋 FilMap 𝑔))
15 simprr 770 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
1614, 15fveq12d 6781 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (( 𝑗 FilMap 𝑔)‘𝑓) = ((𝑋 FilMap 𝑔)‘𝐿))
173, 16oveq12d 7293 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)) = (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)))
1813, 17mpteq12dv 5165 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
19 topontop 22062 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2019adantr 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
21 fvssunirn 6803 . . . . . 6 (Fil‘𝑌) ⊆ ran Fil
2221sseli 3917 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ran Fil)
2322adantl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐿 ran Fil)
24 ovex 7308 . . . . . 6 (𝑋m 𝑌) ∈ V
2524mptex 7099 . . . . 5 (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V
2625a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V)
272, 18, 20, 23, 26ovmpod 7425 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
28273adant3 1131 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
29 simpr 485 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → 𝑔 = 𝐹)
3029oveq2d 7291 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝑋 FilMap 𝑔) = (𝑋 FilMap 𝐹))
3130fveq1d 6776 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → ((𝑋 FilMap 𝑔)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿))
3231oveq2d 7291 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
33 toponmax 22075 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
34 filtop 23006 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
35 elmapg 8628 . . . 4 ((𝑋𝐽𝑌𝐿) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3633, 34, 35syl2an 596 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3736biimp3ar 1469 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ (𝑋m 𝑌))
38 ovexd 7310 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V)
3928, 32, 37, 38fvmptd 6882 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432   cuni 4839  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Topctop 22042  TopOnctopon 22059  Filcfil 22996   FilMap cfm 23084   fClus cfcls 23087   fClusf cfcf 23088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-fbas 20594  df-top 22043  df-topon 22060  df-fil 22997  df-fcf 23093
This theorem is referenced by:  isfcf  23185  fcfelbas  23187  flfssfcf  23189  uffcfflf  23190  cnpfcfi  23191  cnpfcf  23192
  Copyright terms: Public domain W3C validator