Step | Hyp | Ref
| Expression |
1 | | df-fcf 22254 |
. . . . 5
⊢ fClusf =
(𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ (𝑔 ∈ (∪ 𝑗 ↑𝑚
∪ 𝑓) ↦ (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓)))) |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → fClusf = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ (𝑔 ∈ (∪ 𝑗
↑𝑚 ∪ 𝑓) ↦ (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓))))) |
3 | | simprl 758 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → 𝑗 = 𝐽) |
4 | 3 | unieqd 4722 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → ∪ 𝑗 = ∪
𝐽) |
5 | | toponuni 21226 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 5 | ad2antrr 713 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → 𝑋 = ∪ 𝐽) |
7 | 4, 6 | eqtr4d 2817 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → ∪ 𝑗 = 𝑋) |
8 | | unieq 4720 |
. . . . . . . 8
⊢ (𝑓 = 𝐿 → ∪ 𝑓 = ∪
𝐿) |
9 | 8 | ad2antll 716 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → ∪ 𝑓 = ∪
𝐿) |
10 | | filunibas 22193 |
. . . . . . . 8
⊢ (𝐿 ∈ (Fil‘𝑌) → ∪ 𝐿 =
𝑌) |
11 | 10 | ad2antlr 714 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → ∪ 𝐿 = 𝑌) |
12 | 9, 11 | eqtrd 2814 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → ∪ 𝑓 = 𝑌) |
13 | 7, 12 | oveq12d 6994 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → (∪
𝑗
↑𝑚 ∪ 𝑓) = (𝑋 ↑𝑚 𝑌)) |
14 | 7 | oveq1d 6991 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → (∪
𝑗 FilMap 𝑔) = (𝑋 FilMap 𝑔)) |
15 | | simprr 760 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → 𝑓 = 𝐿) |
16 | 14, 15 | fveq12d 6506 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → ((∪
𝑗 FilMap 𝑔)‘𝑓) = ((𝑋 FilMap 𝑔)‘𝐿)) |
17 | 3, 16 | oveq12d 6994 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓)) = (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) |
18 | 13, 17 | mpteq12dv 5012 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑓 = 𝐿)) → (𝑔 ∈ (∪ 𝑗 ↑𝑚
∪ 𝑓) ↦ (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓))) = (𝑔 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)))) |
19 | | topontop 21225 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
20 | 19 | adantr 473 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top) |
21 | | fvssunirn 6528 |
. . . . . 6
⊢
(Fil‘𝑌)
⊆ ∪ ran Fil |
22 | 21 | sseli 3854 |
. . . . 5
⊢ (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ ∪ ran
Fil) |
23 | 22 | adantl 474 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐿 ∈ ∪ ran
Fil) |
24 | | ovex 7008 |
. . . . . 6
⊢ (𝑋 ↑𝑚
𝑌) ∈
V |
25 | 24 | mptex 6812 |
. . . . 5
⊢ (𝑔 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V |
26 | 25 | a1i 11 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑔 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V) |
27 | 2, 18, 20, 23, 26 | ovmpod 7118 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)))) |
28 | 27 | 3adant3 1112 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋 ↑𝑚 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)))) |
29 | | simpr 477 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑔 = 𝐹) → 𝑔 = 𝐹) |
30 | 29 | oveq2d 6992 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑔 = 𝐹) → (𝑋 FilMap 𝑔) = (𝑋 FilMap 𝐹)) |
31 | 30 | fveq1d 6501 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑔 = 𝐹) → ((𝑋 FilMap 𝑔)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿)) |
32 | 31 | oveq2d 6992 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑔 = 𝐹) → (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) |
33 | | toponmax 21238 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
34 | | filtop 22167 |
. . . 4
⊢ (𝐿 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝐿) |
35 | | elmapg 8219 |
. . . 4
⊢ ((𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿) → (𝐹 ∈ (𝑋 ↑𝑚 𝑌) ↔ 𝐹:𝑌⟶𝑋)) |
36 | 33, 34, 35 | syl2an 586 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋 ↑𝑚 𝑌) ↔ 𝐹:𝑌⟶𝑋)) |
37 | 36 | biimp3ar 1449 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐹 ∈ (𝑋 ↑𝑚 𝑌)) |
38 | | ovexd 7010 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V) |
39 | 28, 32, 37, 38 | fvmptd 6601 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) |