MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfval Structured version   Visualization version   GIF version

Theorem fcfval 23971
Description: The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))

Proof of Theorem fcfval
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fcf 23880 . . . . 5 fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))))
21a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)))))
3 simprl 770 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
43unieqd 4896 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
5 toponuni 22852 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 726 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑋 = 𝐽)
74, 6eqtr4d 2773 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝑋)
8 unieq 4894 . . . . . . . 8 (𝑓 = 𝐿 𝑓 = 𝐿)
98ad2antll 729 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
10 filunibas 23819 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑌) → 𝐿 = 𝑌)
1110ad2antlr 727 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝐿 = 𝑌)
129, 11eqtrd 2770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝑌)
137, 12oveq12d 7423 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗m 𝑓) = (𝑋m 𝑌))
147oveq1d 7420 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗 FilMap 𝑔) = (𝑋 FilMap 𝑔))
15 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
1614, 15fveq12d 6883 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (( 𝑗 FilMap 𝑔)‘𝑓) = ((𝑋 FilMap 𝑔)‘𝐿))
173, 16oveq12d 7423 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)) = (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)))
1813, 17mpteq12dv 5207 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
19 topontop 22851 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2019adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
21 fvssunirn 6909 . . . . . 6 (Fil‘𝑌) ⊆ ran Fil
2221sseli 3954 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ran Fil)
2322adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐿 ran Fil)
24 ovex 7438 . . . . . 6 (𝑋m 𝑌) ∈ V
2524mptex 7215 . . . . 5 (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V
2625a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V)
272, 18, 20, 23, 26ovmpod 7559 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
28273adant3 1132 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
29 simpr 484 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → 𝑔 = 𝐹)
3029oveq2d 7421 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝑋 FilMap 𝑔) = (𝑋 FilMap 𝐹))
3130fveq1d 6878 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → ((𝑋 FilMap 𝑔)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿))
3231oveq2d 7421 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
33 toponmax 22864 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
34 filtop 23793 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
35 elmapg 8853 . . . 4 ((𝑋𝐽𝑌𝐿) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3633, 34, 35syl2an 596 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3736biimp3ar 1472 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ (𝑋m 𝑌))
38 ovexd 7440 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V)
3928, 32, 37, 38fvmptd 6993 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459   cuni 4883  cmpt 5201  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  Topctop 22831  TopOnctopon 22848  Filcfil 23783   FilMap cfm 23871   fClus cfcls 23874   fClusf cfcf 23875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-fbas 21312  df-top 22832  df-topon 22849  df-fil 23784  df-fcf 23880
This theorem is referenced by:  isfcf  23972  fcfelbas  23974  flfssfcf  23976  uffcfflf  23977  cnpfcfi  23978  cnpfcf  23979
  Copyright terms: Public domain W3C validator