MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfval Structured version   Visualization version   GIF version

Theorem fcfval 23092
Description: The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))

Proof of Theorem fcfval
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fcf 23001 . . . . 5 fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))))
21a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)))))
3 simprl 767 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
43unieqd 4850 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
5 toponuni 21971 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 722 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑋 = 𝐽)
74, 6eqtr4d 2781 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝑋)
8 unieq 4847 . . . . . . . 8 (𝑓 = 𝐿 𝑓 = 𝐿)
98ad2antll 725 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
10 filunibas 22940 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑌) → 𝐿 = 𝑌)
1110ad2antlr 723 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝐿 = 𝑌)
129, 11eqtrd 2778 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝑌)
137, 12oveq12d 7273 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗m 𝑓) = (𝑋m 𝑌))
147oveq1d 7270 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗 FilMap 𝑔) = (𝑋 FilMap 𝑔))
15 simprr 769 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
1614, 15fveq12d 6763 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (( 𝑗 FilMap 𝑔)‘𝑓) = ((𝑋 FilMap 𝑔)‘𝐿))
173, 16oveq12d 7273 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)) = (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)))
1813, 17mpteq12dv 5161 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
19 topontop 21970 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2019adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
21 fvssunirn 6785 . . . . . 6 (Fil‘𝑌) ⊆ ran Fil
2221sseli 3913 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ran Fil)
2322adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐿 ran Fil)
24 ovex 7288 . . . . . 6 (𝑋m 𝑌) ∈ V
2524mptex 7081 . . . . 5 (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V
2625a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V)
272, 18, 20, 23, 26ovmpod 7403 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
28273adant3 1130 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
29 simpr 484 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → 𝑔 = 𝐹)
3029oveq2d 7271 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝑋 FilMap 𝑔) = (𝑋 FilMap 𝐹))
3130fveq1d 6758 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → ((𝑋 FilMap 𝑔)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿))
3231oveq2d 7271 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
33 toponmax 21983 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
34 filtop 22914 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
35 elmapg 8586 . . . 4 ((𝑋𝐽𝑌𝐿) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3633, 34, 35syl2an 595 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3736biimp3ar 1468 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ (𝑋m 𝑌))
38 ovexd 7290 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V)
3928, 32, 37, 38fvmptd 6864 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422   cuni 4836  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Topctop 21950  TopOnctopon 21967  Filcfil 22904   FilMap cfm 22992   fClus cfcls 22995   fClusf cfcf 22996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-fbas 20507  df-top 21951  df-topon 21968  df-fil 22905  df-fcf 23001
This theorem is referenced by:  isfcf  23093  fcfelbas  23095  flfssfcf  23097  uffcfflf  23098  cnpfcfi  23099  cnpfcf  23100
  Copyright terms: Public domain W3C validator