MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfval Structured version   Visualization version   GIF version

Theorem fcfval 23927
Description: The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))

Proof of Theorem fcfval
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fcf 23836 . . . . 5 fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))))
21a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)))))
3 simprl 770 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
43unieqd 4887 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝐽)
5 toponuni 22808 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 726 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑋 = 𝐽)
74, 6eqtr4d 2768 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑗 = 𝑋)
8 unieq 4885 . . . . . . . 8 (𝑓 = 𝐿 𝑓 = 𝐿)
98ad2antll 729 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
10 filunibas 23775 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑌) → 𝐿 = 𝑌)
1110ad2antlr 727 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝐿 = 𝑌)
129, 11eqtrd 2765 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝑌)
137, 12oveq12d 7408 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗m 𝑓) = (𝑋m 𝑌))
147oveq1d 7405 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → ( 𝑗 FilMap 𝑔) = (𝑋 FilMap 𝑔))
15 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → 𝑓 = 𝐿)
1614, 15fveq12d 6868 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (( 𝑗 FilMap 𝑔)‘𝑓) = ((𝑋 FilMap 𝑔)‘𝐿))
173, 16oveq12d 7408 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓)) = (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)))
1813, 17mpteq12dv 5197 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) ∧ (𝑗 = 𝐽𝑓 = 𝐿)) → (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
19 topontop 22807 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2019adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐽 ∈ Top)
21 fvssunirn 6894 . . . . . 6 (Fil‘𝑌) ⊆ ran Fil
2221sseli 3945 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ran Fil)
2322adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → 𝐿 ran Fil)
24 ovex 7423 . . . . . 6 (𝑋m 𝑌) ∈ V
2524mptex 7200 . . . . 5 (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V
2625a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))) ∈ V)
272, 18, 20, 23, 26ovmpod 7544 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
28273adant3 1132 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClusf 𝐿) = (𝑔 ∈ (𝑋m 𝑌) ↦ (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿))))
29 simpr 484 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → 𝑔 = 𝐹)
3029oveq2d 7406 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝑋 FilMap 𝑔) = (𝑋 FilMap 𝐹))
3130fveq1d 6863 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → ((𝑋 FilMap 𝑔)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝐿))
3231oveq2d 7406 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑔 = 𝐹) → (𝐽 fClus ((𝑋 FilMap 𝑔)‘𝐿)) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
33 toponmax 22820 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
34 filtop 23749 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
35 elmapg 8815 . . . 4 ((𝑋𝐽𝑌𝐿) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3633, 34, 35syl2an 596 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐹 ∈ (𝑋m 𝑌) ↔ 𝐹:𝑌𝑋))
3736biimp3ar 1472 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ (𝑋m 𝑌))
38 ovexd 7425 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ∈ V)
3928, 32, 37, 38fvmptd 6978 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450   cuni 4874  cmpt 5191  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Topctop 22787  TopOnctopon 22804  Filcfil 23739   FilMap cfm 23827   fClus cfcls 23830   fClusf cfcf 23831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-fbas 21268  df-top 22788  df-topon 22805  df-fil 23740  df-fcf 23836
This theorem is referenced by:  isfcf  23928  fcfelbas  23930  flfssfcf  23932  uffcfflf  23933  cnpfcfi  23934  cnpfcf  23935
  Copyright terms: Public domain W3C validator