Step | Hyp | Ref
| Expression |
1 | | df-fcf 23437 |
. . . . 5
β’ fClusf =
(π β Top, π β βͺ ran Fil β¦ (π β (βͺ π βm βͺ π)
β¦ (π fClus ((βͺ π
FilMap π)βπ)))) |
2 | 1 | a1i 11 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β fClusf = (π β Top, π β βͺ ran Fil
β¦ (π β (βͺ π
βm βͺ π) β¦ (π fClus ((βͺ π FilMap π)βπ))))) |
3 | | simprl 769 |
. . . . . . . 8
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β π = π½) |
4 | 3 | unieqd 4921 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β βͺ π = βͺ
π½) |
5 | | toponuni 22407 |
. . . . . . . 8
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
6 | 5 | ad2antrr 724 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β π = βͺ π½) |
7 | 4, 6 | eqtr4d 2775 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β βͺ π = π) |
8 | | unieq 4918 |
. . . . . . . 8
β’ (π = πΏ β βͺ π = βͺ
πΏ) |
9 | 8 | ad2antll 727 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β βͺ π = βͺ
πΏ) |
10 | | filunibas 23376 |
. . . . . . . 8
β’ (πΏ β (Filβπ) β βͺ πΏ =
π) |
11 | 10 | ad2antlr 725 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β βͺ πΏ = π) |
12 | 9, 11 | eqtrd 2772 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β βͺ π = π) |
13 | 7, 12 | oveq12d 7423 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β (βͺ
π βm βͺ π) =
(π βm π)) |
14 | 7 | oveq1d 7420 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β (βͺ
π FilMap π) = (π FilMap π)) |
15 | | simprr 771 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β π = πΏ) |
16 | 14, 15 | fveq12d 6895 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β ((βͺ
π FilMap π)βπ) = ((π FilMap π)βπΏ)) |
17 | 3, 16 | oveq12d 7423 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β (π fClus ((βͺ π FilMap π)βπ)) = (π½ fClus ((π FilMap π)βπΏ))) |
18 | 13, 17 | mpteq12dv 5238 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β§ (π = π½ β§ π = πΏ)) β (π β (βͺ π βm βͺ π)
β¦ (π fClus ((βͺ π
FilMap π)βπ))) = (π β (π βm π) β¦ (π½ fClus ((π FilMap π)βπΏ)))) |
19 | | topontop 22406 |
. . . . 5
β’ (π½ β (TopOnβπ) β π½ β Top) |
20 | 19 | adantr 481 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β π½ β Top) |
21 | | fvssunirn 6921 |
. . . . . 6
β’
(Filβπ)
β βͺ ran Fil |
22 | 21 | sseli 3977 |
. . . . 5
β’ (πΏ β (Filβπ) β πΏ β βͺ ran
Fil) |
23 | 22 | adantl 482 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β πΏ β βͺ ran
Fil) |
24 | | ovex 7438 |
. . . . . 6
β’ (π βm π) β V |
25 | 24 | mptex 7221 |
. . . . 5
β’ (π β (π βm π) β¦ (π½ fClus ((π FilMap π)βπΏ))) β V |
26 | 25 | a1i 11 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β (π β (π βm π) β¦ (π½ fClus ((π FilMap π)βπΏ))) β V) |
27 | 2, 18, 20, 23, 26 | ovmpod 7556 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β (π½ fClusf πΏ) = (π β (π βm π) β¦ (π½ fClus ((π FilMap π)βπΏ)))) |
28 | 27 | 3adant3 1132 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π½ fClusf πΏ) = (π β (π βm π) β¦ (π½ fClus ((π FilMap π)βπΏ)))) |
29 | | simpr 485 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π = πΉ) β π = πΉ) |
30 | 29 | oveq2d 7421 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π = πΉ) β (π FilMap π) = (π FilMap πΉ)) |
31 | 30 | fveq1d 6890 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π = πΉ) β ((π FilMap π)βπΏ) = ((π FilMap πΉ)βπΏ)) |
32 | 31 | oveq2d 7421 |
. 2
β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ π = πΉ) β (π½ fClus ((π FilMap π)βπΏ)) = (π½ fClus ((π FilMap πΉ)βπΏ))) |
33 | | toponmax 22419 |
. . . 4
β’ (π½ β (TopOnβπ) β π β π½) |
34 | | filtop 23350 |
. . . 4
β’ (πΏ β (Filβπ) β π β πΏ) |
35 | | elmapg 8829 |
. . . 4
β’ ((π β π½ β§ π β πΏ) β (πΉ β (π βm π) β πΉ:πβΆπ)) |
36 | 33, 34, 35 | syl2an 596 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ)) β (πΉ β (π βm π) β πΉ:πβΆπ)) |
37 | 36 | biimp3ar 1470 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β πΉ β (π βm π)) |
38 | | ovexd 7440 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π½ fClus ((π FilMap πΉ)βπΏ)) β V) |
39 | 28, 32, 37, 38 | fvmptd 7002 |
1
β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = (π½ fClus ((π FilMap πΉ)βπΏ))) |