![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > div2sub | Structured version Visualization version GIF version |
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.) |
Ref | Expression |
---|---|
div2sub | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11495 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | subcl 11495 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 − 𝐷) ∈ ℂ) | |
3 | 2 | 3adant3 1129 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → (𝐶 − 𝐷) ∈ ℂ) |
4 | subeq0 11522 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) = 0 ↔ 𝐶 = 𝐷)) | |
5 | 4 | necon3bid 2981 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) ≠ 0 ↔ 𝐶 ≠ 𝐷)) |
6 | 5 | biimp3ar 1466 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → (𝐶 − 𝐷) ≠ 0) |
7 | 3, 6 | jca 510 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → ((𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0)) |
8 | div2neg 11973 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ (𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) | |
9 | 8 | 3expb 1117 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ ((𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) |
10 | 1, 7, 9 | syl2an 594 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) |
11 | negsubdi2 11555 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | |
12 | negsubdi2 11555 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶 − 𝐷) = (𝐷 − 𝐶)) | |
13 | 12 | 3adant3 1129 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → -(𝐶 − 𝐷) = (𝐷 − 𝐶)) |
14 | 11, 13 | oveqan12d 7443 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
15 | 10, 14 | eqtr3d 2769 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 (class class class)co 7424 ℂcc 11142 0cc0 11144 − cmin 11480 -cneg 11481 / cdiv 11907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 |
This theorem is referenced by: div2subd 12076 |
Copyright terms: Public domain | W3C validator |