MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div2sub Structured version   Visualization version   GIF version

Theorem div2sub 12040
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2sub (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))

Proof of Theorem div2sub
StepHypRef Expression
1 subcl 11460 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2 subcl 11460 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
323adant3 1129 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷) → (𝐶𝐷) ∈ ℂ)
4 subeq0 11487 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷) = 0 ↔ 𝐶 = 𝐷))
54necon3bid 2979 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷) ≠ 0 ↔ 𝐶𝐷))
65biimp3ar 1466 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷) → (𝐶𝐷) ≠ 0)
73, 6jca 511 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷) → ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) ≠ 0))
8 div2neg 11938 . . . 4 (((𝐴𝐵) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) ≠ 0) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
983expb 1117 . . 3 (((𝐴𝐵) ∈ ℂ ∧ ((𝐶𝐷) ∈ ℂ ∧ (𝐶𝐷) ≠ 0)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
101, 7, 9syl2an 595 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐴𝐵) / (𝐶𝐷)))
11 negsubdi2 11520 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
12 negsubdi2 11520 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶𝐷) = (𝐷𝐶))
13123adant3 1129 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷) → -(𝐶𝐷) = (𝐷𝐶))
1411, 13oveqan12d 7423 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷)) → (-(𝐴𝐵) / -(𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
1510, 14eqtr3d 2768 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  (class class class)co 7404  cc 11107  0cc0 11109  cmin 11445  -cneg 11446   / cdiv 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873
This theorem is referenced by:  div2subd  12041
  Copyright terms: Public domain W3C validator