![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > div2sub | Structured version Visualization version GIF version |
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.) |
Ref | Expression |
---|---|
div2sub | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11535 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | subcl 11535 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 − 𝐷) ∈ ℂ) | |
3 | 2 | 3adant3 1132 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → (𝐶 − 𝐷) ∈ ℂ) |
4 | subeq0 11562 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) = 0 ↔ 𝐶 = 𝐷)) | |
5 | 4 | necon3bid 2991 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) ≠ 0 ↔ 𝐶 ≠ 𝐷)) |
6 | 5 | biimp3ar 1470 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → (𝐶 − 𝐷) ≠ 0) |
7 | 3, 6 | jca 511 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → ((𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0)) |
8 | div2neg 12017 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ (𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) | |
9 | 8 | 3expb 1120 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ ((𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) |
10 | 1, 7, 9 | syl2an 595 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) |
11 | negsubdi2 11595 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | |
12 | negsubdi2 11595 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶 − 𝐷) = (𝐷 − 𝐶)) | |
13 | 12 | 3adant3 1132 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → -(𝐶 − 𝐷) = (𝐷 − 𝐶)) |
14 | 11, 13 | oveqan12d 7467 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
15 | 10, 14 | eqtr3d 2782 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 -cneg 11521 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 |
This theorem is referenced by: div2subd 12120 |
Copyright terms: Public domain | W3C validator |