![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > div2sub | Structured version Visualization version GIF version |
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.) |
Ref | Expression |
---|---|
div2sub | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11505 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | subcl 11505 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 − 𝐷) ∈ ℂ) | |
3 | 2 | 3adant3 1131 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → (𝐶 − 𝐷) ∈ ℂ) |
4 | subeq0 11533 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) = 0 ↔ 𝐶 = 𝐷)) | |
5 | 4 | necon3bid 2983 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) ≠ 0 ↔ 𝐶 ≠ 𝐷)) |
6 | 5 | biimp3ar 1469 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → (𝐶 − 𝐷) ≠ 0) |
7 | 3, 6 | jca 511 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → ((𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0)) |
8 | div2neg 11988 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ (𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) | |
9 | 8 | 3expb 1119 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ ((𝐶 − 𝐷) ∈ ℂ ∧ (𝐶 − 𝐷) ≠ 0)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) |
10 | 1, 7, 9 | syl2an 596 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐴 − 𝐵) / (𝐶 − 𝐷))) |
11 | negsubdi2 11566 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | |
12 | negsubdi2 11566 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → -(𝐶 − 𝐷) = (𝐷 − 𝐶)) | |
13 | 12 | 3adant3 1131 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷) → -(𝐶 − 𝐷) = (𝐷 − 𝐶)) |
14 | 11, 13 | oveqan12d 7450 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → (-(𝐴 − 𝐵) / -(𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
15 | 10, 14 | eqtr3d 2777 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 (class class class)co 7431 ℂcc 11151 0cc0 11153 − cmin 11490 -cneg 11491 / cdiv 11918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: div2subd 12091 |
Copyright terms: Public domain | W3C validator |