MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolinvbi Structured version   Visualization version   GIF version

Theorem slesolinvbi 22632
Description: The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
slesolex.d 𝐷 = (𝑁 maDet 𝑅)
slesolinv.i 𝐼 = (invr𝐴)
Assertion
Ref Expression
slesolinvbi (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌𝑍 = ((𝐼𝑋) · 𝑌)))

Proof of Theorem slesolinvbi
StepHypRef Expression
1 simpl1 1188 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing))
2 simpl2 1189 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑌𝑉))
3 simp3 1135 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐷𝑋) ∈ (Unit‘𝑅))
43anim1i 613 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌))
5 slesolex.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 slesolex.b . . . 4 𝐵 = (Base‘𝐴)
7 slesolex.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
8 slesolex.x . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
9 slesolex.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
10 slesolinv.i . . . 4 𝐼 = (invr𝐴)
115, 6, 7, 8, 9, 10slesolinv 22631 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼𝑋) · 𝑌))
121, 2, 4, 11syl3anc 1368 . 2 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 = ((𝐼𝑋) · 𝑌))
13 oveq2 7427 . . 3 (𝑍 = ((𝐼𝑋) · 𝑌) → (𝑋 · 𝑍) = (𝑋 · ((𝐼𝑋) · 𝑌)))
14 simpr 483 . . . . . . . . . 10 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
155, 6matrcl 22361 . . . . . . . . . . . 12 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1615simpld 493 . . . . . . . . . . 11 (𝑋𝐵𝑁 ∈ Fin)
1716adantr 479 . . . . . . . . . 10 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
1814, 17anim12ci 612 . . . . . . . . 9 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
19183adant3 1129 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
20 eqid 2725 . . . . . . . . 9 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
215, 20matmulr 22389 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2219, 21syl 17 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2322oveqd 7436 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) = (𝑋(.r𝐴)(𝐼𝑋)))
24 crngring 20202 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2524adantl 480 . . . . . . . . . 10 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
2625, 17anim12ci 612 . . . . . . . . 9 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
27263adant3 1129 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
285matring 22394 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2927, 28syl 17 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝐴 ∈ Ring)
30 eqid 2725 . . . . . . . . . 10 (Unit‘𝐴) = (Unit‘𝐴)
31 eqid 2725 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
325, 9, 6, 30, 31matunit 22629 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷𝑋) ∈ (Unit‘𝑅)))
3332ad2ant2lr 746 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷𝑋) ∈ (Unit‘𝑅)))
3433biimp3ar 1466 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝐴))
35 eqid 2725 . . . . . . . 8 (.r𝐴) = (.r𝐴)
36 eqid 2725 . . . . . . . 8 (1r𝐴) = (1r𝐴)
3730, 10, 35, 36unitrinv 20350 . . . . . . 7 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝑋(.r𝐴)(𝐼𝑋)) = (1r𝐴))
3829, 34, 37syl2anc 582 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(.r𝐴)(𝐼𝑋)) = (1r𝐴))
3923, 38eqtrd 2765 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) = (1r𝐴))
4039oveq1d 7434 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) · 𝑌) = ((1r𝐴) · 𝑌))
41 eqid 2725 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42253ad2ant1 1130 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
43173ad2ant2 1131 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑁 ∈ Fin)
447eleq2i 2817 . . . . . . . 8 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
4544biimpi 215 . . . . . . 7 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
4645adantl 480 . . . . . 6 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
47463ad2ant2 1131 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
486eleq2i 2817 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4948biimpi 215 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
5049adantr 479 . . . . . 6 ((𝑋𝐵𝑌𝑉) → 𝑋 ∈ (Base‘𝐴))
51503ad2ant2 1131 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Base‘𝐴))
52 eqid 2725 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
5330, 10, 52ringinvcl 20348 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝐼𝑋) ∈ (Base‘𝐴))
5429, 34, 53syl2anc 582 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ (Base‘𝐴))
555, 41, 8, 42, 43, 47, 20, 51, 54mavmulass 22500 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) · 𝑌) = (𝑋 · ((𝐼𝑋) · 𝑌)))
565, 41, 8, 42, 43, 471mavmul 22499 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((1r𝐴) · 𝑌) = 𝑌)
5740, 55, 563eqtr3d 2773 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋 · ((𝐼𝑋) · 𝑌)) = 𝑌)
5813, 57sylan9eqr 2787 . 2 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑍 = ((𝐼𝑋) · 𝑌)) → (𝑋 · 𝑍) = 𝑌)
5912, 58impbida 799 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌𝑍 = ((𝐼𝑋) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  c0 4322  cop 4636  cotp 4638  cfv 6549  (class class class)co 7419  m cmap 8845  Fincfn 8964  Basecbs 17188  .rcmulr 17242  1rcur 20138  Ringcrg 20190  CRingccrg 20191  Unitcui 20311  invrcinvr 20343   maMul cmmul 22339   Mat cmat 22356   maVecMul cmvmul 22491   maDet cmdat 22535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-addf 11224  ax-mulf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-sup 9472  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-xnn0 12583  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-seq 14008  df-exp 14068  df-hash 14331  df-word 14506  df-lsw 14554  df-concat 14562  df-s1 14587  df-substr 14632  df-pfx 14662  df-splice 14741  df-reverse 14750  df-s2 14840  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-starv 17256  df-sca 17257  df-vsca 17258  df-ip 17259  df-tset 17260  df-ple 17261  df-ds 17263  df-unif 17264  df-hom 17265  df-cco 17266  df-0g 17431  df-gsum 17432  df-prds 17437  df-pws 17439  df-mre 17574  df-mrc 17575  df-acs 17577  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-mhm 18748  df-submnd 18749  df-efmnd 18834  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19037  df-subg 19091  df-ghm 19181  df-gim 19227  df-cntz 19285  df-oppg 19314  df-symg 19339  df-pmtr 19414  df-psgn 19463  df-evpm 19464  df-cmn 19754  df-abl 19755  df-mgp 20092  df-rng 20110  df-ur 20139  df-srg 20144  df-ring 20192  df-cring 20193  df-oppr 20290  df-dvdsr 20313  df-unit 20314  df-invr 20344  df-dvr 20357  df-rhm 20428  df-subrng 20500  df-subrg 20525  df-drng 20643  df-lmod 20762  df-lss 20833  df-sra 21075  df-rgmod 21076  df-cnfld 21302  df-zring 21395  df-zrh 21451  df-dsmm 21688  df-frlm 21703  df-assa 21809  df-mamu 22340  df-mat 22357  df-mvmul 22492  df-mdet 22536  df-madu 22585
This theorem is referenced by:  slesolex  22633
  Copyright terms: Public domain W3C validator