Step | Hyp | Ref
| Expression |
1 | | simpl1 1191 |
. . 3
β’ ((((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β§ (π Β· π) = π) β (π β β
β§ π
β CRing)) |
2 | | simpl2 1192 |
. . 3
β’ ((((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β§ (π Β· π) = π) β (π β π΅ β§ π β π)) |
3 | | simp3 1138 |
. . . 4
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π·βπ) β (Unitβπ
)) |
4 | 3 | anim1i 615 |
. . 3
β’ ((((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β§ (π Β· π) = π) β ((π·βπ) β (Unitβπ
) β§ (π Β· π) = π)) |
5 | | slesolex.a |
. . . 4
β’ π΄ = (π Mat π
) |
6 | | slesolex.b |
. . . 4
β’ π΅ = (Baseβπ΄) |
7 | | slesolex.v |
. . . 4
β’ π = ((Baseβπ
) βm π) |
8 | | slesolex.x |
. . . 4
β’ Β· =
(π
maVecMul β¨π, πβ©) |
9 | | slesolex.d |
. . . 4
β’ π· = (π maDet π
) |
10 | | slesolinv.i |
. . . 4
β’ πΌ = (invrβπ΄) |
11 | 5, 6, 7, 8, 9, 10 | slesolinv 22173 |
. . 3
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ (π Β· π) = π)) β π = ((πΌβπ) Β· π)) |
12 | 1, 2, 4, 11 | syl3anc 1371 |
. 2
β’ ((((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β§ (π Β· π) = π) β π = ((πΌβπ) Β· π)) |
13 | | oveq2 7413 |
. . 3
β’ (π = ((πΌβπ) Β· π) β (π Β· π) = (π Β· ((πΌβπ) Β· π))) |
14 | | simpr 485 |
. . . . . . . . . 10
β’ ((π β β
β§ π
β CRing) β π
β CRing) |
15 | 5, 6 | matrcl 21903 |
. . . . . . . . . . . 12
β’ (π β π΅ β (π β Fin β§ π
β V)) |
16 | 15 | simpld 495 |
. . . . . . . . . . 11
β’ (π β π΅ β π β Fin) |
17 | 16 | adantr 481 |
. . . . . . . . . 10
β’ ((π β π΅ β§ π β π) β π β Fin) |
18 | 14, 17 | anim12ci 614 |
. . . . . . . . 9
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π)) β (π β Fin β§ π
β CRing)) |
19 | 18 | 3adant3 1132 |
. . . . . . . 8
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π β Fin β§ π
β CRing)) |
20 | | eqid 2732 |
. . . . . . . . 9
β’ (π
maMul β¨π, π, πβ©) = (π
maMul β¨π, π, πβ©) |
21 | 5, 20 | matmulr 21931 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β (π
maMul β¨π, π, πβ©) = (.rβπ΄)) |
22 | 19, 21 | syl 17 |
. . . . . . 7
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π
maMul β¨π, π, πβ©) = (.rβπ΄)) |
23 | 22 | oveqd 7422 |
. . . . . 6
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π(π
maMul β¨π, π, πβ©)(πΌβπ)) = (π(.rβπ΄)(πΌβπ))) |
24 | | crngring 20061 |
. . . . . . . . . . 11
β’ (π
β CRing β π
β Ring) |
25 | 24 | adantl 482 |
. . . . . . . . . 10
β’ ((π β β
β§ π
β CRing) β π
β Ring) |
26 | 25, 17 | anim12ci 614 |
. . . . . . . . 9
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π)) β (π β Fin β§ π
β Ring)) |
27 | 26 | 3adant3 1132 |
. . . . . . . 8
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π β Fin β§ π
β Ring)) |
28 | 5 | matring 21936 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring) β π΄ β Ring) |
29 | 27, 28 | syl 17 |
. . . . . . 7
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β π΄ β Ring) |
30 | | eqid 2732 |
. . . . . . . . . 10
β’
(Unitβπ΄) =
(Unitβπ΄) |
31 | | eqid 2732 |
. . . . . . . . . 10
β’
(Unitβπ
) =
(Unitβπ
) |
32 | 5, 9, 6, 30, 31 | matunit 22171 |
. . . . . . . . 9
β’ ((π
β CRing β§ π β π΅) β (π β (Unitβπ΄) β (π·βπ) β (Unitβπ
))) |
33 | 32 | ad2ant2lr 746 |
. . . . . . . 8
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π)) β (π β (Unitβπ΄) β (π·βπ) β (Unitβπ
))) |
34 | 33 | biimp3ar 1470 |
. . . . . . 7
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β π β (Unitβπ΄)) |
35 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ΄) = (.rβπ΄) |
36 | | eqid 2732 |
. . . . . . . 8
β’
(1rβπ΄) = (1rβπ΄) |
37 | 30, 10, 35, 36 | unitrinv 20200 |
. . . . . . 7
β’ ((π΄ β Ring β§ π β (Unitβπ΄)) β (π(.rβπ΄)(πΌβπ)) = (1rβπ΄)) |
38 | 29, 34, 37 | syl2anc 584 |
. . . . . 6
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π(.rβπ΄)(πΌβπ)) = (1rβπ΄)) |
39 | 23, 38 | eqtrd 2772 |
. . . . 5
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π(π
maMul β¨π, π, πβ©)(πΌβπ)) = (1rβπ΄)) |
40 | 39 | oveq1d 7420 |
. . . 4
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β ((π(π
maMul β¨π, π, πβ©)(πΌβπ)) Β· π) = ((1rβπ΄) Β· π)) |
41 | | eqid 2732 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ
) |
42 | 25 | 3ad2ant1 1133 |
. . . . 5
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β π
β Ring) |
43 | 17 | 3ad2ant2 1134 |
. . . . 5
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β π β Fin) |
44 | 7 | eleq2i 2825 |
. . . . . . . 8
β’ (π β π β π β ((Baseβπ
) βm π)) |
45 | 44 | biimpi 215 |
. . . . . . 7
β’ (π β π β π β ((Baseβπ
) βm π)) |
46 | 45 | adantl 482 |
. . . . . 6
β’ ((π β π΅ β§ π β π) β π β ((Baseβπ
) βm π)) |
47 | 46 | 3ad2ant2 1134 |
. . . . 5
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β π β ((Baseβπ
) βm π)) |
48 | 6 | eleq2i 2825 |
. . . . . . . 8
β’ (π β π΅ β π β (Baseβπ΄)) |
49 | 48 | biimpi 215 |
. . . . . . 7
β’ (π β π΅ β π β (Baseβπ΄)) |
50 | 49 | adantr 481 |
. . . . . 6
β’ ((π β π΅ β§ π β π) β π β (Baseβπ΄)) |
51 | 50 | 3ad2ant2 1134 |
. . . . 5
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β π β (Baseβπ΄)) |
52 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ΄) =
(Baseβπ΄) |
53 | 30, 10, 52 | ringinvcl 20198 |
. . . . . 6
β’ ((π΄ β Ring β§ π β (Unitβπ΄)) β (πΌβπ) β (Baseβπ΄)) |
54 | 29, 34, 53 | syl2anc 584 |
. . . . 5
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (πΌβπ) β (Baseβπ΄)) |
55 | 5, 41, 8, 42, 43, 47, 20, 51, 54 | mavmulass 22042 |
. . . 4
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β ((π(π
maMul β¨π, π, πβ©)(πΌβπ)) Β· π) = (π Β· ((πΌβπ) Β· π))) |
56 | 5, 41, 8, 42, 43, 47 | 1mavmul 22041 |
. . . 4
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β ((1rβπ΄) Β· π) = π) |
57 | 40, 55, 56 | 3eqtr3d 2780 |
. . 3
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π Β· ((πΌβπ) Β· π)) = π) |
58 | 13, 57 | sylan9eqr 2794 |
. 2
β’ ((((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β§ π = ((πΌβπ) Β· π)) β (π Β· π) = π) |
59 | 12, 58 | impbida 799 |
1
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β ((π Β· π) = π β π = ((πΌβπ) Β· π))) |