MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolinvbi Structured version   Visualization version   GIF version

Theorem slesolinvbi 22544
Description: The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
slesolex.d 𝐷 = (𝑁 maDet 𝑅)
slesolinv.i 𝐼 = (invr𝐴)
Assertion
Ref Expression
slesolinvbi (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌𝑍 = ((𝐼𝑋) · 𝑌)))

Proof of Theorem slesolinvbi
StepHypRef Expression
1 simpl1 1192 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing))
2 simpl2 1193 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑌𝑉))
3 simp3 1138 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐷𝑋) ∈ (Unit‘𝑅))
43anim1i 615 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌))
5 slesolex.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 slesolex.b . . . 4 𝐵 = (Base‘𝐴)
7 slesolex.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
8 slesolex.x . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
9 slesolex.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
10 slesolinv.i . . . 4 𝐼 = (invr𝐴)
115, 6, 7, 8, 9, 10slesolinv 22543 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼𝑋) · 𝑌))
121, 2, 4, 11syl3anc 1373 . 2 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 = ((𝐼𝑋) · 𝑌))
13 oveq2 7377 . . 3 (𝑍 = ((𝐼𝑋) · 𝑌) → (𝑋 · 𝑍) = (𝑋 · ((𝐼𝑋) · 𝑌)))
14 simpr 484 . . . . . . . . . 10 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
155, 6matrcl 22275 . . . . . . . . . . . 12 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1615simpld 494 . . . . . . . . . . 11 (𝑋𝐵𝑁 ∈ Fin)
1716adantr 480 . . . . . . . . . 10 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
1814, 17anim12ci 614 . . . . . . . . 9 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
19183adant3 1132 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
20 eqid 2729 . . . . . . . . 9 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
215, 20matmulr 22301 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2219, 21syl 17 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2322oveqd 7386 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) = (𝑋(.r𝐴)(𝐼𝑋)))
24 crngring 20130 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2524adantl 481 . . . . . . . . . 10 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
2625, 17anim12ci 614 . . . . . . . . 9 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
27263adant3 1132 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
285matring 22306 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2927, 28syl 17 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝐴 ∈ Ring)
30 eqid 2729 . . . . . . . . . 10 (Unit‘𝐴) = (Unit‘𝐴)
31 eqid 2729 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
325, 9, 6, 30, 31matunit 22541 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷𝑋) ∈ (Unit‘𝑅)))
3332ad2ant2lr 748 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷𝑋) ∈ (Unit‘𝑅)))
3433biimp3ar 1472 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝐴))
35 eqid 2729 . . . . . . . 8 (.r𝐴) = (.r𝐴)
36 eqid 2729 . . . . . . . 8 (1r𝐴) = (1r𝐴)
3730, 10, 35, 36unitrinv 20279 . . . . . . 7 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝑋(.r𝐴)(𝐼𝑋)) = (1r𝐴))
3829, 34, 37syl2anc 584 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(.r𝐴)(𝐼𝑋)) = (1r𝐴))
3923, 38eqtrd 2764 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) = (1r𝐴))
4039oveq1d 7384 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) · 𝑌) = ((1r𝐴) · 𝑌))
41 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42253ad2ant1 1133 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
43173ad2ant2 1134 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑁 ∈ Fin)
447eleq2i 2820 . . . . . . . 8 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
4544biimpi 216 . . . . . . 7 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
4645adantl 481 . . . . . 6 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
47463ad2ant2 1134 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
486eleq2i 2820 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4948biimpi 216 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
5049adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝑉) → 𝑋 ∈ (Base‘𝐴))
51503ad2ant2 1134 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Base‘𝐴))
52 eqid 2729 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
5330, 10, 52ringinvcl 20277 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝐼𝑋) ∈ (Base‘𝐴))
5429, 34, 53syl2anc 584 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ (Base‘𝐴))
555, 41, 8, 42, 43, 47, 20, 51, 54mavmulass 22412 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) · 𝑌) = (𝑋 · ((𝐼𝑋) · 𝑌)))
565, 41, 8, 42, 43, 471mavmul 22411 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((1r𝐴) · 𝑌) = 𝑌)
5740, 55, 563eqtr3d 2772 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋 · ((𝐼𝑋) · 𝑌)) = 𝑌)
5813, 57sylan9eqr 2786 . 2 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑍 = ((𝐼𝑋) · 𝑌)) → (𝑋 · 𝑍) = 𝑌)
5912, 58impbida 800 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌𝑍 = ((𝐼𝑋) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292  cop 4591  cotp 4593  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  Basecbs 17155  .rcmulr 17197  1rcur 20066  Ringcrg 20118  CRingccrg 20119  Unitcui 20240  invrcinvr 20272   maMul cmmul 22253   Mat cmat 22270   maVecMul cmvmul 22403   maDet cmdat 22447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-gim 19167  df-cntz 19225  df-oppg 19254  df-symg 19276  df-pmtr 19348  df-psgn 19397  df-evpm 19398  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-lmod 20744  df-lss 20814  df-sra 21056  df-rgmod 21057  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-dsmm 21617  df-frlm 21632  df-assa 21738  df-mamu 22254  df-mat 22271  df-mvmul 22404  df-mdet 22448  df-madu 22497
This theorem is referenced by:  slesolex  22545
  Copyright terms: Public domain W3C validator