MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolinvbi Structured version   Visualization version   GIF version

Theorem slesolinvbi 21268
Description: The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
slesolex.d 𝐷 = (𝑁 maDet 𝑅)
slesolinv.i 𝐼 = (invr𝐴)
Assertion
Ref Expression
slesolinvbi (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌𝑍 = ((𝐼𝑋) · 𝑌)))

Proof of Theorem slesolinvbi
StepHypRef Expression
1 simpl1 1187 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing))
2 simpl2 1188 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑌𝑉))
3 simp3 1134 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐷𝑋) ∈ (Unit‘𝑅))
43anim1i 616 . . 3 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌))
5 slesolex.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
6 slesolex.b . . . 4 𝐵 = (Base‘𝐴)
7 slesolex.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
8 slesolex.x . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
9 slesolex.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
10 slesolinv.i . . . 4 𝐼 = (invr𝐴)
115, 6, 7, 8, 9, 10slesolinv 21267 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼𝑋) · 𝑌))
121, 2, 4, 11syl3anc 1367 . 2 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 = ((𝐼𝑋) · 𝑌))
13 oveq2 7145 . . 3 (𝑍 = ((𝐼𝑋) · 𝑌) → (𝑋 · 𝑍) = (𝑋 · ((𝐼𝑋) · 𝑌)))
14 simpr 487 . . . . . . . . . 10 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
155, 6matrcl 20999 . . . . . . . . . . . 12 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1615simpld 497 . . . . . . . . . . 11 (𝑋𝐵𝑁 ∈ Fin)
1716adantr 483 . . . . . . . . . 10 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
1814, 17anim12ci 615 . . . . . . . . 9 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
19183adant3 1128 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
20 eqid 2820 . . . . . . . . 9 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
215, 20matmulr 21025 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2219, 21syl 17 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2322oveqd 7154 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) = (𝑋(.r𝐴)(𝐼𝑋)))
24 crngring 19286 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2524adantl 484 . . . . . . . . . 10 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
2625, 17anim12ci 615 . . . . . . . . 9 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
27263adant3 1128 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
285matring 21030 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2927, 28syl 17 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝐴 ∈ Ring)
30 eqid 2820 . . . . . . . . . 10 (Unit‘𝐴) = (Unit‘𝐴)
31 eqid 2820 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
325, 9, 6, 30, 31matunit 21265 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷𝑋) ∈ (Unit‘𝑅)))
3332ad2ant2lr 746 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷𝑋) ∈ (Unit‘𝑅)))
3433biimp3ar 1466 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝐴))
35 eqid 2820 . . . . . . . 8 (.r𝐴) = (.r𝐴)
36 eqid 2820 . . . . . . . 8 (1r𝐴) = (1r𝐴)
3730, 10, 35, 36unitrinv 19406 . . . . . . 7 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝑋(.r𝐴)(𝐼𝑋)) = (1r𝐴))
3829, 34, 37syl2anc 586 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(.r𝐴)(𝐼𝑋)) = (1r𝐴))
3923, 38eqtrd 2855 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) = (1r𝐴))
4039oveq1d 7152 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) · 𝑌) = ((1r𝐴) · 𝑌))
41 eqid 2820 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
42253ad2ant1 1129 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
43173ad2ant2 1130 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑁 ∈ Fin)
447eleq2i 2902 . . . . . . . 8 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
4544biimpi 218 . . . . . . 7 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
4645adantl 484 . . . . . 6 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
47463ad2ant2 1130 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
486eleq2i 2902 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4948biimpi 218 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
5049adantr 483 . . . . . 6 ((𝑋𝐵𝑌𝑉) → 𝑋 ∈ (Base‘𝐴))
51503ad2ant2 1130 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Base‘𝐴))
52 eqid 2820 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
5330, 10, 52ringinvcl 19404 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝐼𝑋) ∈ (Base‘𝐴))
5429, 34, 53syl2anc 586 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ (Base‘𝐴))
555, 41, 8, 42, 43, 47, 20, 51, 54mavmulass 21136 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐼𝑋)) · 𝑌) = (𝑋 · ((𝐼𝑋) · 𝑌)))
565, 41, 8, 42, 43, 471mavmul 21135 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((1r𝐴) · 𝑌) = 𝑌)
5740, 55, 563eqtr3d 2863 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑋 · ((𝐼𝑋) · 𝑌)) = 𝑌)
5813, 57sylan9eqr 2877 . 2 ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) ∧ 𝑍 = ((𝐼𝑋) · 𝑌)) → (𝑋 · 𝑍) = 𝑌)
5912, 58impbida 799 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌𝑍 = ((𝐼𝑋) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3011  Vcvv 3481  c0 4274  cop 4554  cotp 4556  cfv 6336  (class class class)co 7137  m cmap 8387  Fincfn 8490  Basecbs 16461  .rcmulr 16544  1rcur 19229  Ringcrg 19275  CRingccrg 19276  Unitcui 19367  invrcinvr 19399   maMul cmmul 20972   Mat cmat 20994   maVecMul cmvmul 21127   maDet cmdat 21171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595  ax-addf 10597  ax-mulf 10598
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-ot 4557  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-of 7390  df-om 7562  df-1st 7670  df-2nd 7671  df-supp 7812  df-tpos 7873  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-2o 8084  df-oadd 8087  df-er 8270  df-map 8389  df-pm 8390  df-ixp 8443  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-fsupp 8815  df-sup 8887  df-oi 8955  df-card 9349  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-div 11279  df-nn 11620  df-2 11682  df-3 11683  df-4 11684  df-5 11685  df-6 11686  df-7 11687  df-8 11688  df-9 11689  df-n0 11880  df-xnn0 11950  df-z 11964  df-dec 12081  df-uz 12226  df-rp 12372  df-fz 12878  df-fzo 13019  df-seq 13355  df-exp 13415  df-hash 13676  df-word 13847  df-lsw 13895  df-concat 13903  df-s1 13930  df-substr 13983  df-pfx 14013  df-splice 14092  df-reverse 14101  df-s2 14190  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-0g 16693  df-gsum 16694  df-prds 16699  df-pws 16701  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mhm 17934  df-submnd 17935  df-efmnd 18012  df-grp 18084  df-minusg 18085  df-sbg 18086  df-mulg 18203  df-subg 18254  df-ghm 18334  df-gim 18377  df-cntz 18425  df-oppg 18452  df-symg 18474  df-pmtr 18548  df-psgn 18597  df-evpm 18598  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-srg 19234  df-ring 19277  df-cring 19278  df-oppr 19351  df-dvdsr 19369  df-unit 19370  df-invr 19400  df-dvr 19411  df-rnghom 19445  df-drng 19482  df-subrg 19511  df-lmod 19614  df-lss 19682  df-sra 19922  df-rgmod 19923  df-assa 20063  df-cnfld 20524  df-zring 20596  df-zrh 20629  df-dsmm 20854  df-frlm 20869  df-mamu 20973  df-mat 20995  df-mvmul 21128  df-mdet 21172  df-madu 21221
This theorem is referenced by:  slesolex  21269
  Copyright terms: Public domain W3C validator