![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basgen2 | Structured version Visualization version GIF version |
Description: Given a topology π½, show that a subset π΅ satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
basgen2 | β’ ((π½ β Top β§ π΅ β π½ β§ βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯)) β (topGenβπ΅) = π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3970 | . . . 4 β’ (π½ β (topGenβπ΅) β βπ₯ β π½ π₯ β (topGenβπ΅)) | |
2 | ssexg 5323 | . . . . . . 7 β’ ((π΅ β π½ β§ π½ β Top) β π΅ β V) | |
3 | 2 | ancoms 459 | . . . . . 6 β’ ((π½ β Top β§ π΅ β π½) β π΅ β V) |
4 | eltg2b 22461 | . . . . . 6 β’ (π΅ β V β (π₯ β (topGenβπ΅) β βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) | |
5 | 3, 4 | syl 17 | . . . . 5 β’ ((π½ β Top β§ π΅ β π½) β (π₯ β (topGenβπ΅) β βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) |
6 | 5 | ralbidv 3177 | . . . 4 β’ ((π½ β Top β§ π΅ β π½) β (βπ₯ β π½ π₯ β (topGenβπ΅) β βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) |
7 | 1, 6 | bitrid 282 | . . 3 β’ ((π½ β Top β§ π΅ β π½) β (π½ β (topGenβπ΅) β βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) |
8 | 7 | biimp3ar 1470 | . 2 β’ ((π½ β Top β§ π΅ β π½ β§ βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯)) β π½ β (topGenβπ΅)) |
9 | basgen 22490 | . 2 β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β (topGenβπ΅) = π½) | |
10 | 8, 9 | syld3an3 1409 | 1 β’ ((π½ β Top β§ π΅ β π½ β§ βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯)) β (topGenβπ΅) = π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 Vcvv 3474 β wss 3948 βcfv 6543 topGenctg 17382 Topctop 22394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-topgen 17388 df-top 22395 |
This theorem is referenced by: pptbas 22510 2ndcctbss 22958 2ndcomap 22961 dis2ndc 22963 met2ndci 24030 |
Copyright terms: Public domain | W3C validator |