MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basgen2 Structured version   Visualization version   GIF version

Theorem basgen2 22491
Description: Given a topology 𝐽, show that a subset 𝐡 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)) β†’ (topGenβ€˜π΅) = 𝐽)
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐡   π‘₯,𝐽,𝑦,𝑧

Proof of Theorem basgen2
StepHypRef Expression
1 dfss3 3970 . . . 4 (𝐽 βŠ† (topGenβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐽 π‘₯ ∈ (topGenβ€˜π΅))
2 ssexg 5323 . . . . . . 7 ((𝐡 βŠ† 𝐽 ∧ 𝐽 ∈ Top) β†’ 𝐡 ∈ V)
32ancoms 459 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ 𝐡 ∈ V)
4 eltg2b 22461 . . . . . 6 (𝐡 ∈ V β†’ (π‘₯ ∈ (topGenβ€˜π΅) ↔ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
53, 4syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ (π‘₯ ∈ (topGenβ€˜π΅) ↔ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
65ralbidv 3177 . . . 4 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ (βˆ€π‘₯ ∈ 𝐽 π‘₯ ∈ (topGenβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
71, 6bitrid 282 . . 3 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ (𝐽 βŠ† (topGenβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
87biimp3ar 1470 . 2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)) β†’ 𝐽 βŠ† (topGenβ€˜π΅))
9 basgen 22490 . 2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ (topGenβ€˜π΅) = 𝐽)
108, 9syld3an3 1409 1 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)) β†’ (topGenβ€˜π΅) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3948  β€˜cfv 6543  topGenctg 17382  Topctop 22394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17388  df-top 22395
This theorem is referenced by:  pptbas  22510  2ndcctbss  22958  2ndcomap  22961  dis2ndc  22963  met2ndci  24030
  Copyright terms: Public domain W3C validator