MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basgen2 Structured version   Visualization version   GIF version

Theorem basgen2 22139
Description: Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen2 ((𝐽 ∈ Top ∧ 𝐵𝐽 ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) → (topGen‘𝐵) = 𝐽)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐽,𝑦,𝑧

Proof of Theorem basgen2
StepHypRef Expression
1 dfss3 3909 . . . 4 (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵))
2 ssexg 5247 . . . . . . 7 ((𝐵𝐽𝐽 ∈ Top) → 𝐵 ∈ V)
32ancoms 459 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵 ∈ V)
4 eltg2b 22109 . . . . . 6 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
53, 4syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
65ralbidv 3112 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
71, 6bitrid 282 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
87biimp3ar 1469 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽 ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) → 𝐽 ⊆ (topGen‘𝐵))
9 basgen 22138 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽)
108, 9syld3an3 1408 1 ((𝐽 ∈ Top ∧ 𝐵𝐽 ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) → (topGen‘𝐵) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  cfv 6433  topGenctg 17148  Topctop 22042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154  df-top 22043
This theorem is referenced by:  pptbas  22158  2ndcctbss  22606  2ndcomap  22609  dis2ndc  22611  met2ndci  23678
  Copyright terms: Public domain W3C validator