![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basgen2 | Structured version Visualization version GIF version |
Description: Given a topology π½, show that a subset π΅ satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
basgen2 | β’ ((π½ β Top β§ π΅ β π½ β§ βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯)) β (topGenβπ΅) = π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3965 | . . . 4 β’ (π½ β (topGenβπ΅) β βπ₯ β π½ π₯ β (topGenβπ΅)) | |
2 | ssexg 5316 | . . . . . . 7 β’ ((π΅ β π½ β§ π½ β Top) β π΅ β V) | |
3 | 2 | ancoms 458 | . . . . . 6 β’ ((π½ β Top β§ π΅ β π½) β π΅ β V) |
4 | eltg2b 22812 | . . . . . 6 β’ (π΅ β V β (π₯ β (topGenβπ΅) β βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) | |
5 | 3, 4 | syl 17 | . . . . 5 β’ ((π½ β Top β§ π΅ β π½) β (π₯ β (topGenβπ΅) β βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) |
6 | 5 | ralbidv 3171 | . . . 4 β’ ((π½ β Top β§ π΅ β π½) β (βπ₯ β π½ π₯ β (topGenβπ΅) β βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) |
7 | 1, 6 | bitrid 283 | . . 3 β’ ((π½ β Top β§ π΅ β π½) β (π½ β (topGenβπ΅) β βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯))) |
8 | 7 | biimp3ar 1466 | . 2 β’ ((π½ β Top β§ π΅ β π½ β§ βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯)) β π½ β (topGenβπ΅)) |
9 | basgen 22841 | . 2 β’ ((π½ β Top β§ π΅ β π½ β§ π½ β (topGenβπ΅)) β (topGenβπ΅) = π½) | |
10 | 8, 9 | syld3an3 1406 | 1 β’ ((π½ β Top β§ π΅ β π½ β§ βπ₯ β π½ βπ¦ β π₯ βπ§ β π΅ (π¦ β π§ β§ π§ β π₯)) β (topGenβπ΅) = π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3055 βwrex 3064 Vcvv 3468 β wss 3943 βcfv 6536 topGenctg 17389 Topctop 22745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-topgen 17395 df-top 22746 |
This theorem is referenced by: pptbas 22861 2ndcctbss 23309 2ndcomap 23312 dis2ndc 23314 met2ndci 24381 |
Copyright terms: Public domain | W3C validator |