MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basgen2 Structured version   Visualization version   GIF version

Theorem basgen2 22812
Description: Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen2 ((𝐽 ∈ Top ∧ 𝐵𝐽 ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) → (topGen‘𝐵) = 𝐽)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐽,𝑦,𝑧

Proof of Theorem basgen2
StepHypRef Expression
1 dfss3 3970 . . . 4 (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵))
2 ssexg 5323 . . . . . . 7 ((𝐵𝐽𝐽 ∈ Top) → 𝐵 ∈ V)
32ancoms 458 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵 ∈ V)
4 eltg2b 22782 . . . . . 6 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
53, 4syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
65ralbidv 3176 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
71, 6bitrid 283 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)))
87biimp3ar 1469 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽 ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) → 𝐽 ⊆ (topGen‘𝐵))
9 basgen 22811 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽)
108, 9syld3an3 1408 1 ((𝐽 ∈ Top ∧ 𝐵𝐽 ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) → (topGen‘𝐵) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  wss 3948  cfv 6543  topGenctg 17390  Topctop 22715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17396  df-top 22716
This theorem is referenced by:  pptbas  22831  2ndcctbss  23279  2ndcomap  23282  dis2ndc  23284  met2ndci  24351
  Copyright terms: Public domain W3C validator