MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvne0 Structured version   Visualization version   GIF version

Theorem abvne0 19720
Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abveq0.z 0 = (0g𝑅)
Assertion
Ref Expression
abvne0 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)

Proof of Theorem abvne0
StepHypRef Expression
1 abvf.a . . . 4 𝐴 = (AbsVal‘𝑅)
2 abvf.b . . . 4 𝐵 = (Base‘𝑅)
3 abveq0.z . . . 4 0 = (0g𝑅)
41, 2, 3abveq0 19719 . . 3 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
54necon3bid 2979 . 2 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) ≠ 0 ↔ 𝑋0 ))
65biimp3ar 1471 1 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  cfv 6340  0cc0 10618  Basecbs 16589  0gc0g 16819  AbsValcabv 19709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-map 8442  df-abv 19710
This theorem is referenced by:  abvgt0  19721  abv1z  19725  abvrec  19729  abvdiv  19730  abvdom  19731
  Copyright terms: Public domain W3C validator