MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvne0 Structured version   Visualization version   GIF version

Theorem abvne0 19037
Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abveq0.z 0 = (0g𝑅)
Assertion
Ref Expression
abvne0 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)

Proof of Theorem abvne0
StepHypRef Expression
1 abvf.a . . . 4 𝐴 = (AbsVal‘𝑅)
2 abvf.b . . . 4 𝐵 = (Base‘𝑅)
3 abveq0.z . . . 4 0 = (0g𝑅)
41, 2, 3abveq0 19036 . . 3 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
54necon3bid 2987 . 2 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) ≠ 0 ↔ 𝑋0 ))
65biimp3ar 1581 1 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cfv 6030  0cc0 10142  Basecbs 16064  0gc0g 16308  AbsValcabv 19026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-map 8015  df-abv 19027
This theorem is referenced by:  abvgt0  19038  abv1z  19042  abvrec  19046  abvdiv  19047  abvdom  19048
  Copyright terms: Public domain W3C validator