MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvne0 Structured version   Visualization version   GIF version

Theorem abvne0 20427
Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsValβ€˜π‘…)
abvf.b 𝐡 = (Baseβ€˜π‘…)
abveq0.z 0 = (0gβ€˜π‘…)
Assertion
Ref Expression
abvne0 ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ 𝑋 β‰  0 ) β†’ (πΉβ€˜π‘‹) β‰  0)

Proof of Theorem abvne0
StepHypRef Expression
1 abvf.a . . . 4 𝐴 = (AbsValβ€˜π‘…)
2 abvf.b . . . 4 𝐡 = (Baseβ€˜π‘…)
3 abveq0.z . . . 4 0 = (0gβ€˜π‘…)
41, 2, 3abveq0 20426 . . 3 ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ ((πΉβ€˜π‘‹) = 0 ↔ 𝑋 = 0 ))
54necon3bid 2985 . 2 ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ ((πΉβ€˜π‘‹) β‰  0 ↔ 𝑋 β‰  0 ))
65biimp3ar 1470 1 ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ 𝑋 β‰  0 ) β†’ (πΉβ€˜π‘‹) β‰  0)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  β€˜cfv 6540  0cc0 11106  Basecbs 17140  0gc0g 17381  AbsValcabv 20416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-abv 20417
This theorem is referenced by:  abvgt0  20428  abv1z  20432  abvrec  20436  abvdiv  20437  abvdom  20438
  Copyright terms: Public domain W3C validator