| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgssq2 | Structured version Visualization version GIF version | ||
| Description: The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgssq2 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | |
| 2 | nnz 12550 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) |
| 4 | nnne0 12220 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 5 | 4 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ≠ 0) |
| 6 | lgsdi 27245 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑁 · 𝑁)) = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) | |
| 7 | 1, 3, 3, 5, 5, 6 | syl32anc 1380 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁 · 𝑁)) = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) |
| 8 | nncn 12194 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 9 | 8 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℂ) |
| 10 | 9 | sqvald 14108 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝑁↑2) = (𝑁 · 𝑁)) |
| 11 | 10 | oveq2d 7403 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = (𝐴 /L (𝑁 · 𝑁))) |
| 12 | lgscl 27222 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | |
| 13 | 1, 3, 12 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L 𝑁) ∈ ℤ) |
| 14 | 13 | zred 12638 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L 𝑁) ∈ ℝ) |
| 15 | absresq 15268 | . . . 4 ⊢ ((𝐴 /L 𝑁) ∈ ℝ → ((abs‘(𝐴 /L 𝑁))↑2) = ((𝐴 /L 𝑁)↑2)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → ((abs‘(𝐴 /L 𝑁))↑2) = ((𝐴 /L 𝑁)↑2)) |
| 17 | lgsabs1 27247 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) | |
| 18 | 2, 17 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
| 19 | 18 | biimp3ar 1472 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (abs‘(𝐴 /L 𝑁)) = 1) |
| 20 | 19 | oveq1d 7402 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → ((abs‘(𝐴 /L 𝑁))↑2) = (1↑2)) |
| 21 | sq1 14160 | . . . 4 ⊢ (1↑2) = 1 | |
| 22 | 20, 21 | eqtrdi 2780 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → ((abs‘(𝐴 /L 𝑁))↑2) = 1) |
| 23 | 13 | zcnd 12639 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L 𝑁) ∈ ℂ) |
| 24 | 23 | sqvald 14108 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴 /L 𝑁)↑2) = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) |
| 25 | 16, 22, 24 | 3eqtr3d 2772 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → 1 = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) |
| 26 | 7, 11, 25 | 3eqtr4d 2774 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 ℕcn 12186 2c2 12241 ℤcz 12529 ↑cexp 14026 abscabs 15200 gcd cgcd 16464 /L clgs 27205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 df-phi 16736 df-pc 16808 df-lgs 27206 |
| This theorem is referenced by: lgs1 27252 lgsquad2lem2 27296 |
| Copyright terms: Public domain | W3C validator |