MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modltm1p1mod Structured version   Visualization version   GIF version

Theorem modltm1p1mod 13894
Description: If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018.)
Assertion
Ref Expression
modltm1p1mod ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))

Proof of Theorem modltm1p1mod
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
2 1red 11181 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 1 ∈ ℝ)
3 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
41, 2, 33jca 1128 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
543adant3 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
6 modaddmod 13880 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
75, 6syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
8 modcl 13841 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
9 peano2re 11353 . . . . . 6 ((𝐴 mod 𝑀) ∈ ℝ → ((𝐴 mod 𝑀) + 1) ∈ ℝ)
108, 9syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) + 1) ∈ ℝ)
1110, 3jca 511 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+))
12113adant3 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+))
13 0red 11183 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ∈ ℝ)
14 modge0 13847 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝑀))
158lep1d 12120 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ≤ ((𝐴 mod 𝑀) + 1))
1613, 8, 10, 14, 15letrd 11337 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ ((𝐴 mod 𝑀) + 1))
17163adant3 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → 0 ≤ ((𝐴 mod 𝑀) + 1))
18 rpre 12966 . . . . . 6 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
1918adantl 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
208, 2, 19ltaddsubd 11784 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) < 𝑀 ↔ (𝐴 mod 𝑀) < (𝑀 − 1)))
2120biimp3ar 1472 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 mod 𝑀) + 1) < 𝑀)
22 modid 13864 . . 3 (((((𝐴 mod 𝑀) + 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ ((𝐴 mod 𝑀) + 1) ∧ ((𝐴 mod 𝑀) + 1) < 𝑀)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))
2312, 17, 21, 22syl12anc 836 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))
247, 23eqtr3d 2767 1 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5109  (class class class)co 7389  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   < clt 11214  cle 11215  cmin 11411  +crp 12957   mod cmo 13837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fl 13760  df-mod 13838
This theorem is referenced by:  clwwisshclwwslemlem  29948
  Copyright terms: Public domain W3C validator