Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lgssq | Structured version Visualization version GIF version |
Description: The Legendre symbol at a square is equal to 1. Together with lgsmod 26469 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
lgssq | ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1196 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | |
2 | simp2 1136 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) | |
3 | simp1r 1197 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ≠ 0) | |
4 | lgsdir 26478 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) | |
5 | 1, 1, 2, 3, 3, 4 | syl32anc 1377 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴 · 𝐴) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) |
6 | zcn 12322 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
8 | 7 | 3ad2ant1 1132 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℂ) |
9 | 8 | sqvald 13859 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴↑2) = (𝐴 · 𝐴)) |
10 | 9 | oveq1d 7292 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = ((𝐴 · 𝐴) /L 𝑁)) |
11 | lgscl 26457 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | |
12 | 1, 2, 11 | syl2anc 584 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L 𝑁) ∈ ℤ) |
13 | 12 | zred 12424 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L 𝑁) ∈ ℝ) |
14 | absresq 15012 | . . . 4 ⊢ ((𝐴 /L 𝑁) ∈ ℝ → ((abs‘(𝐴 /L 𝑁))↑2) = ((𝐴 /L 𝑁)↑2)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((abs‘(𝐴 /L 𝑁))↑2) = ((𝐴 /L 𝑁)↑2)) |
16 | lgsabs1 26482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) | |
17 | 16 | adantlr 712 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
18 | 17 | biimp3ar 1469 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (abs‘(𝐴 /L 𝑁)) = 1) |
19 | 18 | oveq1d 7292 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((abs‘(𝐴 /L 𝑁))↑2) = (1↑2)) |
20 | sq1 13910 | . . . 4 ⊢ (1↑2) = 1 | |
21 | 19, 20 | eqtrdi 2794 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((abs‘(𝐴 /L 𝑁))↑2) = 1) |
22 | 12 | zcnd 12425 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L 𝑁) ∈ ℂ) |
23 | 22 | sqvald 13859 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴 /L 𝑁)↑2) = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) |
24 | 15, 21, 23 | 3eqtr3d 2786 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 1 = ((𝐴 /L 𝑁) · (𝐴 /L 𝑁))) |
25 | 5, 10, 24 | 3eqtr4d 2788 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6435 (class class class)co 7277 ℂcc 10867 ℝcr 10868 0cc0 10869 1c1 10870 · cmul 10874 2c2 12026 ℤcz 12317 ↑cexp 13780 abscabs 14943 gcd cgcd 16199 /L clgs 26440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-pre-sup 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-2o 8296 df-oadd 8299 df-er 8496 df-map 8615 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-sup 9199 df-inf 9200 df-dju 9657 df-card 9695 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-xnn0 12304 df-z 12318 df-uz 12581 df-q 12687 df-rp 12729 df-fz 13238 df-fzo 13381 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-dvds 15962 df-gcd 16200 df-prm 16375 df-phi 16465 df-pc 16536 df-lgs 26441 |
This theorem is referenced by: 1lgs 26486 lgsmulsqcoprm 26489 lgsqr 26497 lgsquad2lem2 26531 |
Copyright terms: Public domain | W3C validator |