Mathbox for Jon Pennant < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocmbl Structured version   Visualization version   GIF version

Theorem iocmbl 40079
 Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocmbl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)

Proof of Theorem iocmbl
StepHypRef Expression
1 rexr 10685 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 ioounsn 12864 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
31, 2syl3an2 1161 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
4 ioombl 24172 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
5 iccid 12780 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
61, 5syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) = {𝐵})
7 iccmbl 24173 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,]𝐵) ∈ dom vol)
87anidms 570 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) ∈ dom vol)
96, 8eqeltrrd 2917 . . . . . . 7 (𝐵 ∈ ℝ → {𝐵} ∈ dom vol)
109adantl 485 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → {𝐵} ∈ dom vol)
11 unmbl 24144 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
124, 10, 11sylancr 590 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
13123adant3 1129 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
143, 13eqeltrrd 2917 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
15143expa 1115 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
16 id 22 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
17 xrlenlt 10704 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
181, 16, 17syl2anr 599 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1918biimp3ar 1467 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
20 ioc0 12782 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
2120biimp3ar 1467 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → (𝐴(,]𝐵) = ∅)
221, 21syl3an2 1161 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) = ∅)
23 0mbl 24146 . . . . 5 ∅ ∈ dom vol
2422, 23eqeltrdi 2924 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) ∈ dom vol)
2519, 24syld3an3 1406 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
26253expa 1115 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
2715, 26pm2.61dan 812 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ∪ cun 3917  ∅c0 4276  {csn 4550   class class class wbr 5052  dom cdm 5542  (class class class)co 7149  ℝcr 10534  ℝ*cxr 10672   < clt 10673   ≤ cle 10674  (,)cioo 12735  (,]cioc 12736  [,]cicc 12738  volcvol 24070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-oi 8971  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-q 12346  df-rp 12387  df-xadd 12505  df-ioo 12739  df-ioc 12740  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-xmet 20538  df-met 20539  df-ovol 24071  df-vol 24072 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator