![]() |
Mathbox for Jon Pennant |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iocmbl | Structured version Visualization version GIF version |
Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.) |
Ref | Expression |
---|---|
iocmbl | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11305 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
2 | ioounsn 13514 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) | |
3 | 1, 2 | syl3an2 1163 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
4 | ioombl 25614 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
5 | iccid 13429 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
6 | 1, 5 | syl 17 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵[,]𝐵) = {𝐵}) |
7 | iccmbl 25615 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,]𝐵) ∈ dom vol) | |
8 | 7 | anidms 566 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵[,]𝐵) ∈ dom vol) |
9 | 6, 8 | eqeltrrd 2840 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → {𝐵} ∈ dom vol) |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → {𝐵} ∈ dom vol) |
11 | unmbl 25586 | . . . . . 6 ⊢ (((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol) | |
12 | 4, 10, 11 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol) |
13 | 12 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol) |
14 | 3, 13 | eqeltrrd 2840 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
15 | 14 | 3expa 1117 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
16 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
17 | xrlenlt 11324 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
18 | 1, 16, 17 | syl2anr 597 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
19 | 18 | biimp3ar 1469 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
20 | ioc0 13431 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
21 | 20 | biimp3ar 1469 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → (𝐴(,]𝐵) = ∅) |
22 | 1, 21 | syl3an2 1163 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴(,]𝐵) = ∅) |
23 | 0mbl 25588 | . . . . 5 ⊢ ∅ ∈ dom vol | |
24 | 22, 23 | eqeltrdi 2847 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴(,]𝐵) ∈ dom vol) |
25 | 19, 24 | syld3an3 1408 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
26 | 25 | 3expa 1117 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
27 | 15, 26 | pm2.61dan 813 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ∅c0 4339 {csn 4631 class class class wbr 5148 dom cdm 5689 (class class class)co 7431 ℝcr 11152 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 (,)cioo 13384 (,]cioc 13385 [,]cicc 13387 volcvol 25512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xadd 13153 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-xmet 21375 df-met 21376 df-ovol 25513 df-vol 25514 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |