| Mathbox for Jon Pennant |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocmbl | Structured version Visualization version GIF version | ||
| Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| iocmbl | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11281 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 2 | ioounsn 13494 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) | |
| 3 | 1, 2 | syl3an2 1164 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
| 4 | ioombl 25518 | . . . . . 6 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
| 5 | iccid 13407 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵}) | |
| 6 | 1, 5 | syl 17 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵[,]𝐵) = {𝐵}) |
| 7 | iccmbl 25519 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,]𝐵) ∈ dom vol) | |
| 8 | 7 | anidms 566 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵[,]𝐵) ∈ dom vol) |
| 9 | 6, 8 | eqeltrrd 2835 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → {𝐵} ∈ dom vol) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → {𝐵} ∈ dom vol) |
| 11 | unmbl 25490 | . . . . . 6 ⊢ (((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol) | |
| 12 | 4, 10, 11 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol) |
| 13 | 12 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol) |
| 14 | 3, 13 | eqeltrrd 2835 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
| 15 | 14 | 3expa 1118 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
| 16 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
| 17 | xrlenlt 11300 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 18 | 1, 16, 17 | syl2anr 597 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 19 | 18 | biimp3ar 1472 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
| 20 | ioc0 13409 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
| 21 | 20 | biimp3ar 1472 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → (𝐴(,]𝐵) = ∅) |
| 22 | 1, 21 | syl3an2 1164 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴(,]𝐵) = ∅) |
| 23 | 0mbl 25492 | . . . . 5 ⊢ ∅ ∈ dom vol | |
| 24 | 22, 23 | eqeltrdi 2842 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴(,]𝐵) ∈ dom vol) |
| 25 | 19, 24 | syld3an3 1411 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
| 26 | 25 | 3expa 1118 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol) |
| 27 | 15, 26 | pm2.61dan 812 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∅c0 4308 {csn 4601 class class class wbr 5119 dom cdm 5654 (class class class)co 7405 ℝcr 11128 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 (,)cioo 13362 (,]cioc 13363 [,]cicc 13365 volcvol 25416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xadd 13129 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-xmet 21308 df-met 21309 df-ovol 25417 df-vol 25418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |