Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocmbl Structured version   Visualization version   GIF version

Theorem iocmbl 43202
Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocmbl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)

Proof of Theorem iocmbl
StepHypRef Expression
1 rexr 11305 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 ioounsn 13514 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
31, 2syl3an2 1163 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
4 ioombl 25614 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
5 iccid 13429 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
61, 5syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) = {𝐵})
7 iccmbl 25615 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,]𝐵) ∈ dom vol)
87anidms 566 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) ∈ dom vol)
96, 8eqeltrrd 2840 . . . . . . 7 (𝐵 ∈ ℝ → {𝐵} ∈ dom vol)
109adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → {𝐵} ∈ dom vol)
11 unmbl 25586 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
124, 10, 11sylancr 587 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
13123adant3 1131 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
143, 13eqeltrrd 2840 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
15143expa 1117 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
16 id 22 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
17 xrlenlt 11324 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
181, 16, 17syl2anr 597 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1918biimp3ar 1469 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
20 ioc0 13431 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
2120biimp3ar 1469 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → (𝐴(,]𝐵) = ∅)
221, 21syl3an2 1163 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) = ∅)
23 0mbl 25588 . . . . 5 ∅ ∈ dom vol
2422, 23eqeltrdi 2847 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) ∈ dom vol)
2519, 24syld3an3 1408 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
26253expa 1117 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
2715, 26pm2.61dan 813 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cun 3961  c0 4339  {csn 4631   class class class wbr 5148  dom cdm 5689  (class class class)co 7431  cr 11152  *cxr 11292   < clt 11293  cle 11294  (,)cioo 13384  (,]cioc 13385  [,]cicc 13387  volcvol 25512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator