Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocmbl Structured version   Visualization version   GIF version

Theorem iocmbl 42878
Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocmbl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)

Proof of Theorem iocmbl
StepHypRef Expression
1 rexr 11310 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 ioounsn 13508 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
31, 2syl3an2 1161 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
4 ioombl 25585 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
5 iccid 13423 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
61, 5syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) = {𝐵})
7 iccmbl 25586 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,]𝐵) ∈ dom vol)
87anidms 565 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) ∈ dom vol)
96, 8eqeltrrd 2827 . . . . . . 7 (𝐵 ∈ ℝ → {𝐵} ∈ dom vol)
109adantl 480 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → {𝐵} ∈ dom vol)
11 unmbl 25557 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
124, 10, 11sylancr 585 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
13123adant3 1129 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
143, 13eqeltrrd 2827 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
15143expa 1115 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
16 id 22 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
17 xrlenlt 11329 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
181, 16, 17syl2anr 595 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1918biimp3ar 1467 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
20 ioc0 13425 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
2120biimp3ar 1467 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → (𝐴(,]𝐵) = ∅)
221, 21syl3an2 1161 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) = ∅)
23 0mbl 25559 . . . . 5 ∅ ∈ dom vol
2422, 23eqeltrdi 2834 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) ∈ dom vol)
2519, 24syld3an3 1406 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
26253expa 1115 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
2715, 26pm2.61dan 811 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  cun 3945  c0 4325  {csn 4633   class class class wbr 5153  dom cdm 5682  (class class class)co 7424  cr 11157  *cxr 11297   < clt 11298  cle 11299  (,)cioo 13378  (,]cioc 13379  [,]cicc 13381  volcvol 25483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xadd 13147  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-rlim 15491  df-sum 15691  df-xmet 21336  df-met 21337  df-ovol 25484  df-vol 25485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator