![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvopabf4g | Structured version Visualization version GIF version |
Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
fvopabf4g.1 | ⊢ 𝐶 ∈ V |
fvopabf4g.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvopabf4g.3 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) |
Ref | Expression |
---|---|
fvopabf4g | ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapg 8833 | . . . 4 ⊢ ((𝑅 ∈ 𝑌 ∧ 𝐷 ∈ 𝑋) → (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅)) | |
2 | 1 | ancoms 460 | . . 3 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅)) |
3 | 2 | biimp3ar 1471 | . 2 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → 𝐴 ∈ (𝑅 ↑m 𝐷)) |
4 | fvopabf4g.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | fvopabf4g.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) | |
6 | fvopabf4g.1 | . . 3 ⊢ 𝐶 ∈ V | |
7 | 4, 5, 6 | fvmpt 6999 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑m 𝐷) → (𝐹‘𝐴) = 𝐶) |
8 | 3, 7 | syl 17 | 1 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ↦ cmpt 5232 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ↑m cmap 8820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |