Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvopabf4g Structured version   Visualization version   GIF version

Theorem fvopabf4g 37772
Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
fvopabf4g.1 𝐶 ∈ V
fvopabf4g.2 (𝑥 = 𝐴𝐵 = 𝐶)
fvopabf4g.3 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
Assertion
Ref Expression
fvopabf4g ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fvopabf4g
StepHypRef Expression
1 elmapg 8772 . . . 4 ((𝑅𝑌𝐷𝑋) → (𝐴 ∈ (𝑅m 𝐷) ↔ 𝐴:𝐷𝑅))
21ancoms 458 . . 3 ((𝐷𝑋𝑅𝑌) → (𝐴 ∈ (𝑅m 𝐷) ↔ 𝐴:𝐷𝑅))
32biimp3ar 1472 . 2 ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → 𝐴 ∈ (𝑅m 𝐷))
4 fvopabf4g.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
5 fvopabf4g.3 . . 3 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
6 fvopabf4g.1 . . 3 𝐶 ∈ V
74, 5, 6fvmpt 6938 . 2 (𝐴 ∈ (𝑅m 𝐷) → (𝐹𝐴) = 𝐶)
83, 7syl 17 1 ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3438  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator