Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvopabf4g Structured version   Visualization version   GIF version

Theorem fvopabf4g 35879
Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
fvopabf4g.1 𝐶 ∈ V
fvopabf4g.2 (𝑥 = 𝐴𝐵 = 𝐶)
fvopabf4g.3 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
Assertion
Ref Expression
fvopabf4g ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fvopabf4g
StepHypRef Expression
1 elmapg 8628 . . . 4 ((𝑅𝑌𝐷𝑋) → (𝐴 ∈ (𝑅m 𝐷) ↔ 𝐴:𝐷𝑅))
21ancoms 459 . . 3 ((𝐷𝑋𝑅𝑌) → (𝐴 ∈ (𝑅m 𝐷) ↔ 𝐴:𝐷𝑅))
32biimp3ar 1469 . 2 ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → 𝐴 ∈ (𝑅m 𝐷))
4 fvopabf4g.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
5 fvopabf4g.3 . . 3 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
6 fvopabf4g.1 . . 3 𝐶 ∈ V
74, 5, 6fvmpt 6875 . 2 (𝐴 ∈ (𝑅m 𝐷) → (𝐹𝐴) = 𝐶)
83, 7syl 17 1 ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator