| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvopabf4g | Structured version Visualization version GIF version | ||
| Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvopabf4g.1 | ⊢ 𝐶 ∈ V |
| fvopabf4g.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvopabf4g.3 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvopabf4g | ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapg 8814 | . . . 4 ⊢ ((𝑅 ∈ 𝑌 ∧ 𝐷 ∈ 𝑋) → (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅)) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅)) |
| 3 | 2 | biimp3ar 1472 | . 2 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → 𝐴 ∈ (𝑅 ↑m 𝐷)) |
| 4 | fvopabf4g.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | fvopabf4g.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) | |
| 6 | fvopabf4g.1 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6970 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑m 𝐷) → (𝐹‘𝐴) = 𝐶) |
| 8 | 3, 7 | syl 17 | 1 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5190 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |