Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvopabf4g | Structured version Visualization version GIF version |
Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
fvopabf4g.1 | ⊢ 𝐶 ∈ V |
fvopabf4g.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvopabf4g.3 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) |
Ref | Expression |
---|---|
fvopabf4g | ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapg 8676 | . . . 4 ⊢ ((𝑅 ∈ 𝑌 ∧ 𝐷 ∈ 𝑋) → (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅)) | |
2 | 1 | ancoms 459 | . . 3 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅)) |
3 | 2 | biimp3ar 1469 | . 2 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → 𝐴 ∈ (𝑅 ↑m 𝐷)) |
4 | fvopabf4g.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | fvopabf4g.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) | |
6 | fvopabf4g.1 | . . 3 ⊢ 𝐶 ∈ V | |
7 | 4, 5, 6 | fvmpt 6914 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑m 𝐷) → (𝐹‘𝐴) = 𝐶) |
8 | 3, 7 | syl 17 | 1 ⊢ ((𝐷 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝐴:𝐷⟶𝑅) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5170 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 ↑m cmap 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-map 8665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |