Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvopabf4g Structured version   Visualization version   GIF version

Theorem fvopabf4g 36590
Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
fvopabf4g.1 𝐶 ∈ V
fvopabf4g.2 (𝑥 = 𝐴𝐵 = 𝐶)
fvopabf4g.3 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
Assertion
Ref Expression
fvopabf4g ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fvopabf4g
StepHypRef Expression
1 elmapg 8833 . . . 4 ((𝑅𝑌𝐷𝑋) → (𝐴 ∈ (𝑅m 𝐷) ↔ 𝐴:𝐷𝑅))
21ancoms 460 . . 3 ((𝐷𝑋𝑅𝑌) → (𝐴 ∈ (𝑅m 𝐷) ↔ 𝐴:𝐷𝑅))
32biimp3ar 1471 . 2 ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → 𝐴 ∈ (𝑅m 𝐷))
4 fvopabf4g.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
5 fvopabf4g.3 . . 3 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
6 fvopabf4g.1 . . 3 𝐶 ∈ V
74, 5, 6fvmpt 6999 . 2 (𝐴 ∈ (𝑅m 𝐷) → (𝐹𝐴) = 𝐶)
83, 7syl 17 1 ((𝐷𝑋𝑅𝑌𝐴:𝐷𝑅) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  cmpt 5232  wf 6540  cfv 6544  (class class class)co 7409  m cmap 8820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator