MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv1 Structured version   Visualization version   GIF version

Theorem nv1 30661
Description: From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nv1.1 𝑋 = (BaseSet‘𝑈)
nv1.4 𝑆 = ( ·𝑠OLD𝑈)
nv1.5 𝑍 = (0vec𝑈)
nv1.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nv1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (𝑁‘((1 / (𝑁𝐴))𝑆𝐴)) = 1)

Proof of Theorem nv1
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → 𝑈 ∈ NrmCVec)
2 nv1.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 nv1.6 . . . . . 6 𝑁 = (normCV𝑈)
42, 3nvcl 30647 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
543adant3 1132 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (𝑁𝐴) ∈ ℝ)
6 nv1.5 . . . . . . 7 𝑍 = (0vec𝑈)
72, 6, 3nvz 30655 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))
87necon3bid 2977 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) ≠ 0 ↔ 𝐴𝑍))
98biimp3ar 1472 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (𝑁𝐴) ≠ 0)
105, 9rereccld 12073 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (1 / (𝑁𝐴)) ∈ ℝ)
112, 6, 3nvgt0 30660 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑍 ↔ 0 < (𝑁𝐴)))
1211biimp3a 1471 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → 0 < (𝑁𝐴))
13 1re 11240 . . . . 5 1 ∈ ℝ
14 0le1 11765 . . . . 5 0 ≤ 1
15 divge0 12116 . . . . 5 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))) → 0 ≤ (1 / (𝑁𝐴)))
1613, 14, 15mpanl12 702 . . . 4 (((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴)) → 0 ≤ (1 / (𝑁𝐴)))
175, 12, 16syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → 0 ≤ (1 / (𝑁𝐴)))
18 simp2 1137 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → 𝐴𝑋)
19 nv1.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
202, 19, 3nvsge0 30650 . . 3 ((𝑈 ∈ NrmCVec ∧ ((1 / (𝑁𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑁𝐴))) ∧ 𝐴𝑋) → (𝑁‘((1 / (𝑁𝐴))𝑆𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
211, 10, 17, 18, 20syl121anc 1377 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (𝑁‘((1 / (𝑁𝐴))𝑆𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
224recnd 11268 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
23223adant3 1132 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (𝑁𝐴) ∈ ℂ)
2423, 9recid2d 12018 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → ((1 / (𝑁𝐴)) · (𝑁𝐴)) = 1)
2521, 24eqtrd 2771 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑍) → (𝑁‘((1 / (𝑁𝐴))𝑆𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  NrmCVeccnv 30570  BaseSetcba 30572   ·𝑠OLD cns 30573  0veccn0v 30574  normCVcnmcv 30576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-grpo 30479  df-gid 30480  df-ginv 30481  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-nmcv 30586
This theorem is referenced by:  nmlno0lem  30779  nmblolbii  30785
  Copyright terms: Public domain W3C validator