![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nv1 | Structured version Visualization version GIF version |
Description: From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nv1.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nv1.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nv1.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nv1.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nv1 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 𝑈 ∈ NrmCVec) | |
2 | nv1.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | nv1.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
4 | 2, 3 | nvcl 30693 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
5 | 4 | 3adant3 1132 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘𝐴) ∈ ℝ) |
6 | nv1.5 | . . . . . . 7 ⊢ 𝑍 = (0vec‘𝑈) | |
7 | 2, 6, 3 | nvz 30701 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
8 | 7 | necon3bid 2991 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) ≠ 0 ↔ 𝐴 ≠ 𝑍)) |
9 | 8 | biimp3ar 1470 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘𝐴) ≠ 0) |
10 | 5, 9 | rereccld 12121 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (1 / (𝑁‘𝐴)) ∈ ℝ) |
11 | 2, 6, 3 | nvgt0 30706 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 𝑍 ↔ 0 < (𝑁‘𝐴))) |
12 | 11 | biimp3a 1469 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 0 < (𝑁‘𝐴)) |
13 | 1re 11290 | . . . . 5 ⊢ 1 ∈ ℝ | |
14 | 0le1 11813 | . . . . 5 ⊢ 0 ≤ 1 | |
15 | divge0 12164 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁‘𝐴) ∈ ℝ ∧ 0 < (𝑁‘𝐴))) → 0 ≤ (1 / (𝑁‘𝐴))) | |
16 | 13, 14, 15 | mpanl12 701 | . . . 4 ⊢ (((𝑁‘𝐴) ∈ ℝ ∧ 0 < (𝑁‘𝐴)) → 0 ≤ (1 / (𝑁‘𝐴))) |
17 | 5, 12, 16 | syl2anc 583 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 0 ≤ (1 / (𝑁‘𝐴))) |
18 | simp2 1137 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 𝐴 ∈ 𝑋) | |
19 | nv1.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
20 | 2, 19, 3 | nvsge0 30696 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ ((1 / (𝑁‘𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑁‘𝐴))) ∧ 𝐴 ∈ 𝑋) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = ((1 / (𝑁‘𝐴)) · (𝑁‘𝐴))) |
21 | 1, 10, 17, 18, 20 | syl121anc 1375 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = ((1 / (𝑁‘𝐴)) · (𝑁‘𝐴))) |
22 | 4 | recnd 11318 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℂ) |
23 | 22 | 3adant3 1132 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘𝐴) ∈ ℂ) |
24 | 23, 9 | recid2d 12066 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → ((1 / (𝑁‘𝐴)) · (𝑁‘𝐴)) = 1) |
25 | 21, 24 | eqtrd 2780 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 < clt 11324 ≤ cle 11325 / cdiv 11947 NrmCVeccnv 30616 BaseSetcba 30618 ·𝑠OLD cns 30619 0veccn0v 30620 normCVcnmcv 30622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 |
This theorem is referenced by: nmlno0lem 30825 nmblolbii 30831 |
Copyright terms: Public domain | W3C validator |