| Step | Hyp | Ref
| Expression |
| 1 | | relopabv 5805 |
. . . . 5
⊢ Rel
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} |
| 2 | 1 | a1i 11 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 3 | | fnfun 6643 |
. . . . . 6
⊢ (𝐹 Fn 𝐵 → Fun 𝐹) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Fun 𝐹) |
| 5 | | funmo 6556 |
. . . . . . 7
⊢ (Fun
𝐹 → ∃*𝑤(𝑧 − 𝐴)𝐹𝑤) |
| 6 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 7 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
| 8 | | eleq1w 2818 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ)) |
| 9 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 − 𝐴) = (𝑧 − 𝐴)) |
| 10 | 9 | breq1d 5134 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑥 − 𝐴)𝐹𝑦 ↔ (𝑧 − 𝐴)𝐹𝑦)) |
| 11 | 8, 10 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑦))) |
| 12 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑧 − 𝐴)𝐹𝑦 ↔ (𝑧 − 𝐴)𝐹𝑤)) |
| 13 | 12 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤))) |
| 14 | | eqid 2736 |
. . . . . . . . . 10
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} |
| 15 | 6, 7, 11, 13, 14 | brab 5523 |
. . . . . . . . 9
⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤 ↔ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)) |
| 16 | 15 | simprbi 496 |
. . . . . . . 8
⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤 → (𝑧 − 𝐴)𝐹𝑤) |
| 17 | 16 | moimi 2545 |
. . . . . . 7
⊢
(∃*𝑤(𝑧 − 𝐴)𝐹𝑤 → ∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
| 18 | 5, 17 | syl 17 |
. . . . . 6
⊢ (Fun
𝐹 → ∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
| 19 | 18 | alrimiv 1927 |
. . . . 5
⊢ (Fun
𝐹 → ∀𝑧∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
| 20 | 4, 19 | syl 17 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → ∀𝑧∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
| 21 | | dffun6 6549 |
. . . 4
⊢ (Fun
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ↔ (Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∧ ∀𝑧∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤)) |
| 22 | 2, 20, 21 | sylanbrc 583 |
. . 3
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 23 | | shftfval.1 |
. . . . . 6
⊢ 𝐹 ∈ V |
| 24 | 23 | shftfval 15094 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 25 | 24 | adantl 481 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 26 | 25 | funeqd 6563 |
. . 3
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (Fun (𝐹 shift 𝐴) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)})) |
| 27 | 22, 26 | mpbird 257 |
. 2
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Fun (𝐹 shift 𝐴)) |
| 28 | 23 | shftdm 15095 |
. . 3
⊢ (𝐴 ∈ ℂ → dom
(𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
| 29 | | fndm 6646 |
. . . . 5
⊢ (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵) |
| 30 | 29 | eleq2d 2821 |
. . . 4
⊢ (𝐹 Fn 𝐵 → ((𝑥 − 𝐴) ∈ dom 𝐹 ↔ (𝑥 − 𝐴) ∈ 𝐵)) |
| 31 | 30 | rabbidv 3428 |
. . 3
⊢ (𝐹 Fn 𝐵 → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹} = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
| 32 | 28, 31 | sylan9eqr 2793 |
. 2
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
| 33 | | df-fn 6539 |
. 2
⊢ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ↔ (Fun (𝐹 shift 𝐴) ∧ dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵})) |
| 34 | 27, 32, 33 | sylanbrc 583 |
1
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |