MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfn Structured version   Visualization version   GIF version

Theorem shftfn 15046
Description: Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfn ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem shftfn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5787 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
21a1i 11 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3 fnfun 6621 . . . . . 6 (𝐹 Fn 𝐵 → Fun 𝐹)
43adantr 480 . . . . 5 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun 𝐹)
5 funmo 6534 . . . . . . 7 (Fun 𝐹 → ∃*𝑤(𝑧𝐴)𝐹𝑤)
6 vex 3454 . . . . . . . . . 10 𝑧 ∈ V
7 vex 3454 . . . . . . . . . 10 𝑤 ∈ V
8 eleq1w 2812 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ))
9 oveq1 7397 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
109breq1d 5120 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑥𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑦))
118, 10anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦)))
12 breq2 5114 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑧𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑤))
1312anbi2d 630 . . . . . . . . . 10 (𝑦 = 𝑤 → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)))
14 eqid 2730 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
156, 7, 11, 13, 14brab 5506 . . . . . . . . 9 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤))
1615simprbi 496 . . . . . . . 8 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 → (𝑧𝐴)𝐹𝑤)
1716moimi 2539 . . . . . . 7 (∃*𝑤(𝑧𝐴)𝐹𝑤 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
185, 17syl 17 . . . . . 6 (Fun 𝐹 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
1918alrimiv 1927 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
204, 19syl 17 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
21 dffun6 6527 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∧ ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤))
222, 20, 21sylanbrc 583 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
23 shftfval.1 . . . . . 6 𝐹 ∈ V
2423shftfval 15043 . . . . 5 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2524adantl 481 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2625funeqd 6541 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (Fun (𝐹 shift 𝐴) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}))
2722, 26mpbird 257 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun (𝐹 shift 𝐴))
2823shftdm 15044 . . 3 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
29 fndm 6624 . . . . 5 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
3029eleq2d 2815 . . . 4 (𝐹 Fn 𝐵 → ((𝑥𝐴) ∈ dom 𝐹 ↔ (𝑥𝐴) ∈ 𝐵))
3130rabbidv 3416 . . 3 (𝐹 Fn 𝐵 → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
3228, 31sylan9eqr 2787 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
33 df-fn 6517 . 2 ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (Fun (𝐹 shift 𝐴) ∧ dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}))
3427, 32, 33sylanbrc 583 1 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  {crab 3408  Vcvv 3450   class class class wbr 5110  {copab 5172  dom cdm 5641  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  (class class class)co 7390  cc 11073  cmin 11412   shift cshi 15039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414  df-shft 15040
This theorem is referenced by:  shftf  15052  seqshft  15058  uzmptshftfval  44342
  Copyright terms: Public domain W3C validator