Step | Hyp | Ref
| Expression |
1 | | relopabv 5731 |
. . . . 5
⊢ Rel
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
3 | | fnfun 6533 |
. . . . . 6
⊢ (𝐹 Fn 𝐵 → Fun 𝐹) |
4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Fun 𝐹) |
5 | | funmo 6450 |
. . . . . . 7
⊢ (Fun
𝐹 → ∃*𝑤(𝑧 − 𝐴)𝐹𝑤) |
6 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
7 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
8 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ)) |
9 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 − 𝐴) = (𝑧 − 𝐴)) |
10 | 9 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑥 − 𝐴)𝐹𝑦 ↔ (𝑧 − 𝐴)𝐹𝑦)) |
11 | 8, 10 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑦))) |
12 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑧 − 𝐴)𝐹𝑦 ↔ (𝑧 − 𝐴)𝐹𝑤)) |
13 | 12 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤))) |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} |
15 | 6, 7, 11, 13, 14 | brab 5456 |
. . . . . . . . 9
⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤 ↔ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)) |
16 | 15 | simprbi 497 |
. . . . . . . 8
⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤 → (𝑧 − 𝐴)𝐹𝑤) |
17 | 16 | moimi 2545 |
. . . . . . 7
⊢
(∃*𝑤(𝑧 − 𝐴)𝐹𝑤 → ∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
18 | 5, 17 | syl 17 |
. . . . . 6
⊢ (Fun
𝐹 → ∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
19 | 18 | alrimiv 1930 |
. . . . 5
⊢ (Fun
𝐹 → ∀𝑧∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
20 | 4, 19 | syl 17 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → ∀𝑧∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤) |
21 | | dffun6 6449 |
. . . 4
⊢ (Fun
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ↔ (Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∧ ∀𝑧∃*𝑤 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑤)) |
22 | 2, 20, 21 | sylanbrc 583 |
. . 3
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
23 | | shftfval.1 |
. . . . . 6
⊢ 𝐹 ∈ V |
24 | 23 | shftfval 14781 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
25 | 24 | adantl 482 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
26 | 25 | funeqd 6456 |
. . 3
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (Fun (𝐹 shift 𝐴) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)})) |
27 | 22, 26 | mpbird 256 |
. 2
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → Fun (𝐹 shift 𝐴)) |
28 | 23 | shftdm 14782 |
. . 3
⊢ (𝐴 ∈ ℂ → dom
(𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
29 | | fndm 6536 |
. . . . 5
⊢ (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵) |
30 | 29 | eleq2d 2824 |
. . . 4
⊢ (𝐹 Fn 𝐵 → ((𝑥 − 𝐴) ∈ dom 𝐹 ↔ (𝑥 − 𝐴) ∈ 𝐵)) |
31 | 30 | rabbidv 3414 |
. . 3
⊢ (𝐹 Fn 𝐵 → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹} = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
32 | 28, 31 | sylan9eqr 2800 |
. 2
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
33 | | df-fn 6436 |
. 2
⊢ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ↔ (Fun (𝐹 shift 𝐴) ∧ dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵})) |
34 | 27, 32, 33 | sylanbrc 583 |
1
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |