MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfn Structured version   Visualization version   GIF version

Theorem shftfn 14254
Description: Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfn ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem shftfn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5574 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
21a1i 11 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3 fnfun 6315 . . . . . 6 (𝐹 Fn 𝐵 → Fun 𝐹)
43adantr 481 . . . . 5 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun 𝐹)
5 funmo 6233 . . . . . . 7 (Fun 𝐹 → ∃*𝑤(𝑧𝐴)𝐹𝑤)
6 vex 3435 . . . . . . . . . 10 𝑧 ∈ V
7 vex 3435 . . . . . . . . . 10 𝑤 ∈ V
8 eleq1w 2863 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ))
9 oveq1 7014 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
109breq1d 4966 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑥𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑦))
118, 10anbi12d 630 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦)))
12 breq2 4960 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑧𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑤))
1312anbi2d 628 . . . . . . . . . 10 (𝑦 = 𝑤 → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)))
14 eqid 2793 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
156, 7, 11, 13, 14brab 5312 . . . . . . . . 9 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤))
1615simprbi 497 . . . . . . . 8 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 → (𝑧𝐴)𝐹𝑤)
1716moimi 2579 . . . . . . 7 (∃*𝑤(𝑧𝐴)𝐹𝑤 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
185, 17syl 17 . . . . . 6 (Fun 𝐹 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
1918alrimiv 1903 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
204, 19syl 17 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
21 dffun6 6232 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∧ ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤))
222, 20, 21sylanbrc 583 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
23 shftfval.1 . . . . . 6 𝐹 ∈ V
2423shftfval 14251 . . . . 5 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2524adantl 482 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2625funeqd 6239 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (Fun (𝐹 shift 𝐴) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}))
2722, 26mpbird 258 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun (𝐹 shift 𝐴))
2823shftdm 14252 . . 3 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
29 fndm 6317 . . . . 5 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
3029eleq2d 2866 . . . 4 (𝐹 Fn 𝐵 → ((𝑥𝐴) ∈ dom 𝐹 ↔ (𝑥𝐴) ∈ 𝐵))
3130rabbidv 3420 . . 3 (𝐹 Fn 𝐵 → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
3228, 31sylan9eqr 2851 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
33 df-fn 6220 . 2 ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (Fun (𝐹 shift 𝐴) ∧ dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}))
3427, 32, 33sylanbrc 583 1 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1518   = wceq 1520  wcel 2079  ∃*wmo 2572  {crab 3107  Vcvv 3432   class class class wbr 4956  {copab 5018  dom cdm 5435  Rel wrel 5440  Fun wfun 6211   Fn wfn 6212  (class class class)co 7007  cc 10370  cmin 10706   shift cshi 14247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-po 5354  df-so 5355  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-ltxr 10515  df-sub 10708  df-shft 14248
This theorem is referenced by:  shftf  14260  seqshft  14266  uzmptshftfval  40168
  Copyright terms: Public domain W3C validator