MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2shfti Structured version   Visualization version   GIF version

Theorem 2shfti 14608
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
2shfti ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))

Proof of Theorem 2shfti
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9 𝐹 ∈ V
21shftfval 14598 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
32breqd 5050 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦))
4 ovex 7224 . . . . . . . 8 (𝑥𝐵) ∈ V
5 vex 3402 . . . . . . . 8 𝑦 ∈ V
6 eleq1 2818 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → (𝑧 ∈ ℂ ↔ (𝑥𝐵) ∈ ℂ))
7 oveq1 7198 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → (𝑧𝐴) = ((𝑥𝐵) − 𝐴))
87breq1d 5049 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑧𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑤))
96, 8anbi12d 634 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤)))
10 breq2 5043 . . . . . . . . 9 (𝑤 = 𝑦 → (((𝑥𝐵) − 𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑦))
1110anbi2d 632 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
12 eqid 2736 . . . . . . . 8 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}
134, 5, 9, 11, 12brab 5409 . . . . . . 7 ((𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦))
143, 13bitrdi 290 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1514ad2antrr 726 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
16 subcl 11042 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
1716biantrurd 536 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1817ancoms 462 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1918adantll 714 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
20 sub32 11077 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = ((𝑥𝐵) − 𝐴))
21 subsub4 11076 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = (𝑥 − (𝐴 + 𝐵)))
2220, 21eqtr3d 2773 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
23223expb 1122 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2423ancoms 462 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2524breq1d 5049 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2615, 19, 253bitr2d 310 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2726pm5.32da 582 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)))
2827opabbidv 5105 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
29 ovex 7224 . . . 4 (𝐹 shift 𝐴) ∈ V
3029shftfval 14598 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
3130adantl 485 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
32 addcl 10776 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
331shftfval 14598 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3432, 33syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3528, 31, 343eqtr4d 2781 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398   class class class wbr 5039  {copab 5101  (class class class)co 7191  cc 10692   + caddc 10697  cmin 11027   shift cshi 14594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-ltxr 10837  df-sub 11029  df-shft 14595
This theorem is referenced by:  shftcan1  14611
  Copyright terms: Public domain W3C validator