MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2shfti Structured version   Visualization version   GIF version

Theorem 2shfti 14989
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
2shfti ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))

Proof of Theorem 2shfti
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9 𝐹 ∈ V
21shftfval 14979 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
32breqd 5104 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦))
4 ovex 7385 . . . . . . . 8 (𝑥𝐵) ∈ V
5 vex 3441 . . . . . . . 8 𝑦 ∈ V
6 eleq1 2821 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → (𝑧 ∈ ℂ ↔ (𝑥𝐵) ∈ ℂ))
7 oveq1 7359 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → (𝑧𝐴) = ((𝑥𝐵) − 𝐴))
87breq1d 5103 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑧𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑤))
96, 8anbi12d 632 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤)))
10 breq2 5097 . . . . . . . . 9 (𝑤 = 𝑦 → (((𝑥𝐵) − 𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑦))
1110anbi2d 630 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
12 eqid 2733 . . . . . . . 8 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}
134, 5, 9, 11, 12brab 5486 . . . . . . 7 ((𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦))
143, 13bitrdi 287 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1514ad2antrr 726 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
16 subcl 11366 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
1716biantrurd 532 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1817ancoms 458 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1918adantll 714 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
20 sub32 11402 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = ((𝑥𝐵) − 𝐴))
21 subsub4 11401 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = (𝑥 − (𝐴 + 𝐵)))
2220, 21eqtr3d 2770 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
23223expb 1120 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2423ancoms 458 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2524breq1d 5103 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2615, 19, 253bitr2d 307 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2726pm5.32da 579 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)))
2827opabbidv 5159 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
29 ovex 7385 . . . 4 (𝐹 shift 𝐴) ∈ V
3029shftfval 14979 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
3130adantl 481 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
32 addcl 11095 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
331shftfval 14979 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3432, 33syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3528, 31, 343eqtr4d 2778 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5093  {copab 5155  (class class class)co 7352  cc 11011   + caddc 11016  cmin 11351   shift cshi 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-shft 14976
This theorem is referenced by:  shftcan1  14992
  Copyright terms: Public domain W3C validator