Step | Hyp | Ref
| Expression |
1 | | shftfval.1 |
. . . . . . . . 9
⊢ 𝐹 ∈ V |
2 | 1 | shftfval 14709 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) |
3 | 2 | breqd 5081 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥 − 𝐵){〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}𝑦)) |
4 | | ovex 7288 |
. . . . . . . 8
⊢ (𝑥 − 𝐵) ∈ V |
5 | | vex 3426 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
6 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥 − 𝐵) → (𝑧 ∈ ℂ ↔ (𝑥 − 𝐵) ∈ ℂ)) |
7 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 − 𝐵) → (𝑧 − 𝐴) = ((𝑥 − 𝐵) − 𝐴)) |
8 | 7 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥 − 𝐵) → ((𝑧 − 𝐴)𝐹𝑤 ↔ ((𝑥 − 𝐵) − 𝐴)𝐹𝑤)) |
9 | 6, 8 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 − 𝐵) → ((𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤) ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑤))) |
10 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (((𝑥 − 𝐵) − 𝐴)𝐹𝑤 ↔ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦)) |
11 | 10 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑤) ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦))) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
{〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)} = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)} |
13 | 4, 5, 9, 11, 12 | brab 5449 |
. . . . . . 7
⊢ ((𝑥 − 𝐵){〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}𝑦 ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦)) |
14 | 3, 13 | bitrdi 286 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦))) |
15 | 14 | ad2antrr 722 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦))) |
16 | | subcl 11150 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 − 𝐵) ∈ ℂ) |
17 | 16 | biantrurd 532 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑥 − 𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦))) |
18 | 17 | ancoms 458 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥 − 𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦))) |
19 | 18 | adantll 710 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥 − 𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥 − 𝐵) ∈ ℂ ∧ ((𝑥 − 𝐵) − 𝐴)𝐹𝑦))) |
20 | | sub32 11185 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 − 𝐴) − 𝐵) = ((𝑥 − 𝐵) − 𝐴)) |
21 | | subsub4 11184 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 − 𝐴) − 𝐵) = (𝑥 − (𝐴 + 𝐵))) |
22 | 20, 21 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 − 𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵))) |
23 | 22 | 3expb 1118 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝑥 − 𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵))) |
24 | 23 | ancoms 458 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥 − 𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵))) |
25 | 24 | breq1d 5080 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥 − 𝐵) − 𝐴)𝐹𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)) |
26 | 15, 19, 25 | 3bitr2d 306 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)) |
27 | 26 | pm5.32da 578 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))) |
28 | 27 | opabbidv 5136 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)}) |
29 | | ovex 7288 |
. . . 4
⊢ (𝐹 shift 𝐴) ∈ V |
30 | 29 | shftfval 14709 |
. . 3
⊢ (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) shift 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦)}) |
31 | 30 | adantl 481 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐵)(𝐹 shift 𝐴)𝑦)}) |
32 | | addcl 10884 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
33 | 1 | shftfval 14709 |
. . 3
⊢ ((𝐴 + 𝐵) ∈ ℂ → (𝐹 shift (𝐴 + 𝐵)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)}) |
34 | 32, 33 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 shift (𝐴 + 𝐵)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)}) |
35 | 28, 31, 34 | 3eqtr4d 2788 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵))) |