MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2shfti Structured version   Visualization version   GIF version

Theorem 2shfti 14719
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
2shfti ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))

Proof of Theorem 2shfti
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9 𝐹 ∈ V
21shftfval 14709 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
32breqd 5081 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦))
4 ovex 7288 . . . . . . . 8 (𝑥𝐵) ∈ V
5 vex 3426 . . . . . . . 8 𝑦 ∈ V
6 eleq1 2826 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → (𝑧 ∈ ℂ ↔ (𝑥𝐵) ∈ ℂ))
7 oveq1 7262 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → (𝑧𝐴) = ((𝑥𝐵) − 𝐴))
87breq1d 5080 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑧𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑤))
96, 8anbi12d 630 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤)))
10 breq2 5074 . . . . . . . . 9 (𝑤 = 𝑦 → (((𝑥𝐵) − 𝐴)𝐹𝑤 ↔ ((𝑥𝐵) − 𝐴)𝐹𝑦))
1110anbi2d 628 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑤) ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
12 eqid 2738 . . . . . . . 8 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}
134, 5, 9, 11, 12brab 5449 . . . . . . 7 ((𝑥𝐵){⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)}𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦))
143, 13bitrdi 286 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1514ad2antrr 722 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
16 subcl 11150 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
1716biantrurd 532 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1817ancoms 458 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
1918adantll 710 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ ((𝑥𝐵) ∈ ℂ ∧ ((𝑥𝐵) − 𝐴)𝐹𝑦)))
20 sub32 11185 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = ((𝑥𝐵) − 𝐴))
21 subsub4 11184 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴) − 𝐵) = (𝑥 − (𝐴 + 𝐵)))
2220, 21eqtr3d 2780 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
23223expb 1118 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2423ancoms 458 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵) − 𝐴) = (𝑥 − (𝐴 + 𝐵)))
2524breq1d 5080 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → (((𝑥𝐵) − 𝐴)𝐹𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2615, 19, 253bitr2d 306 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)(𝐹 shift 𝐴)𝑦 ↔ (𝑥 − (𝐴 + 𝐵))𝐹𝑦))
2726pm5.32da 578 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)))
2827opabbidv 5136 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
29 ovex 7288 . . . 4 (𝐹 shift 𝐴) ∈ V
3029shftfval 14709 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
3130adantl 481 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐵)(𝐹 shift 𝐴)𝑦)})
32 addcl 10884 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
331shftfval 14709 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3432, 33syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 shift (𝐴 + 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − (𝐴 + 𝐵))𝐹𝑦)})
3528, 31, 343eqtr4d 2788 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  {copab 5132  (class class class)co 7255  cc 10800   + caddc 10805  cmin 11135   shift cshi 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-shft 14706
This theorem is referenced by:  shftcan1  14722
  Copyright terms: Public domain W3C validator