Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbthlem10 | Structured version Visualization version GIF version |
Description: Lemma for sbth 8880. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
sbthlem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
sbthlem10 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
2 | 1 | brdom 8750 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | sbthlem.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 3 | brdom 8750 | . . . 4 ⊢ (𝐵 ≼ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1→𝐴) |
5 | 2, 4 | anbi12i 627 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) |
6 | exdistrv 1959 | . . 3 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ ∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴)) |
8 | sbthlem.3 | . . . . 5 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
9 | vex 3436 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
10 | 9 | resex 5939 | . . . . . 6 ⊢ (𝑓 ↾ ∪ 𝐷) ∈ V |
11 | vex 3436 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
12 | 11 | cnvex 7772 | . . . . . . 7 ⊢ ◡𝑔 ∈ V |
13 | 12 | resex 5939 | . . . . . 6 ⊢ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) ∈ V |
14 | 10, 13 | unex 7596 | . . . . 5 ⊢ ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ∈ V |
15 | 8, 14 | eqeltri 2835 | . . . 4 ⊢ 𝐻 ∈ V |
16 | sbthlem.2 | . . . . 5 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
17 | 3, 16, 8 | sbthlem9 8878 | . . . 4 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
18 | f1oen3g 8754 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝐻:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
19 | 15, 17, 18 | sylancr 587 | . . 3 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
20 | 19 | exlimivv 1935 | . 2 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
21 | 7, 20 | sylbi 216 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 –1-1→wf1 6430 –1-1-onto→wf1o 6432 ≈ cen 8730 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 df-dom 8735 |
This theorem is referenced by: sbth 8880 |
Copyright terms: Public domain | W3C validator |