MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem10 Structured version   Visualization version   GIF version

Theorem sbthlem10 9013
Description: Lemma for sbth 9014. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthlem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthlem10 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓,𝑔   𝑥,𝐻   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem10
StepHypRef Expression
1 sbthlem.4 . . . . 5 𝐵 ∈ V
21brdom 8886 . . . 4 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 sbthlem.1 . . . . 5 𝐴 ∈ V
43brdom 8886 . . . 4 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
52, 4anbi12i 628 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
6 exdistrv 1955 . . 3 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
75, 6bitr4i 278 . 2 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
8 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
9 vex 3440 . . . . . . 7 𝑓 ∈ V
109resex 5980 . . . . . 6 (𝑓 𝐷) ∈ V
11 vex 3440 . . . . . . . 8 𝑔 ∈ V
1211cnvex 7858 . . . . . . 7 𝑔 ∈ V
1312resex 5980 . . . . . 6 (𝑔 ↾ (𝐴 𝐷)) ∈ V
1410, 13unex 7680 . . . . 5 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V
158, 14eqeltri 2824 . . . 4 𝐻 ∈ V
16 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
173, 16, 8sbthlem9 9012 . . . 4 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
18 f1oen3g 8892 . . . 4 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
1915, 17, 18sylancr 587 . . 3 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
2019exlimivv 1932 . 2 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
217, 20sylbi 217 1 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  Vcvv 3436  cdif 3900  cun 3901  wss 3903   cuni 4858   class class class wbr 5092  ccnv 5618  cres 5621  cima 5622  1-1wf1 6479  1-1-ontowf1o 6481  cen 8869  cdom 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-en 8873  df-dom 8874
This theorem is referenced by:  sbth  9014
  Copyright terms: Public domain W3C validator