MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem10 Structured version   Visualization version   GIF version

Theorem sbthlem10 9043
Description: Lemma for sbth 9044. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthlem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthlem10 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓,𝑔   𝑥,𝐻   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem10
StepHypRef Expression
1 sbthlem.4 . . . . 5 𝐵 ∈ V
21brdom 8907 . . . 4 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 sbthlem.1 . . . . 5 𝐴 ∈ V
43brdom 8907 . . . 4 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
52, 4anbi12i 628 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
6 exdistrv 1960 . . 3 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
75, 6bitr4i 278 . 2 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
8 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
9 vex 3452 . . . . . . 7 𝑓 ∈ V
109resex 5990 . . . . . 6 (𝑓 𝐷) ∈ V
11 vex 3452 . . . . . . . 8 𝑔 ∈ V
1211cnvex 7867 . . . . . . 7 𝑔 ∈ V
1312resex 5990 . . . . . 6 (𝑔 ↾ (𝐴 𝐷)) ∈ V
1410, 13unex 7685 . . . . 5 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V
158, 14eqeltri 2834 . . . 4 𝐻 ∈ V
16 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
173, 16, 8sbthlem9 9042 . . . 4 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
18 f1oen3g 8913 . . . 4 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
1915, 17, 18sylancr 588 . . 3 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
2019exlimivv 1936 . 2 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
217, 20sylbi 216 1 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  {cab 2714  Vcvv 3448  cdif 3912  cun 3913  wss 3915   cuni 4870   class class class wbr 5110  ccnv 5637  cres 5640  cima 5641  1-1wf1 6498  1-1-ontowf1o 6500  cen 8887  cdom 8888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-en 8891  df-dom 8892
This theorem is referenced by:  sbth  9044
  Copyright terms: Public domain W3C validator