![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthlem10 | Structured version Visualization version GIF version |
Description: Lemma for sbth 9089. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
sbthlem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
sbthlem10 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
2 | 1 | brdom 8952 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | sbthlem.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 3 | brdom 8952 | . . . 4 ⊢ (𝐵 ≼ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1→𝐴) |
5 | 2, 4 | anbi12i 627 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) |
6 | exdistrv 1959 | . . 3 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ ∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴)) |
8 | sbthlem.3 | . . . . 5 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
9 | vex 3478 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
10 | 9 | resex 6027 | . . . . . 6 ⊢ (𝑓 ↾ ∪ 𝐷) ∈ V |
11 | vex 3478 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
12 | 11 | cnvex 7912 | . . . . . . 7 ⊢ ◡𝑔 ∈ V |
13 | 12 | resex 6027 | . . . . . 6 ⊢ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) ∈ V |
14 | 10, 13 | unex 7729 | . . . . 5 ⊢ ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ∈ V |
15 | 8, 14 | eqeltri 2829 | . . . 4 ⊢ 𝐻 ∈ V |
16 | sbthlem.2 | . . . . 5 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
17 | 3, 16, 8 | sbthlem9 9087 | . . . 4 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
18 | f1oen3g 8958 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝐻:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
19 | 15, 17, 18 | sylancr 587 | . . 3 ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
20 | 19 | exlimivv 1935 | . 2 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
21 | 7, 20 | sylbi 216 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 Vcvv 3474 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 ∪ cuni 4907 class class class wbr 5147 ◡ccnv 5674 ↾ cres 5677 “ cima 5678 –1-1→wf1 6537 –1-1-onto→wf1o 6539 ≈ cen 8932 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-en 8936 df-dom 8937 |
This theorem is referenced by: sbth 9089 |
Copyright terms: Public domain | W3C validator |